1
|
Hu W, Huang K, Zhang L, Ni J, Xu W, Bi S. Immunomodulatory effect of Atractylodis macrocephala Koidz. polysaccharides in vitro. Poult Sci 2024; 103:103171. [PMID: 37925772 PMCID: PMC10652128 DOI: 10.1016/j.psj.2023.103171] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/25/2023] [Accepted: 10/06/2023] [Indexed: 11/07/2023] Open
Abstract
Vaccination is still the main method of preventing most infectious diseases, but there are inefficiencies and inaccuracies in immunization. Studies have reported that Atractylodis macrocephalae Koidz. polysaccharides (RAMP) have immunomodulatory effects, but the mechanisms involved in whether they can modulate the immune response in chickens are not yet clear. The aim of this study was to investigate the effect of RAMP on lymphocytes functions by analyzing cell proliferation, cell cycle, mRNA expression of cytokines and CD4 +/CD8 + ratio. To identify potential molecules involved in immune regulation, we performed a comprehensive transcriptome profiling of chicken lymphocytes. In addition, the adjuvant effect of RAMP was evaluated by detecting indicators of hemagglutination inhibition. When lymphocytes were cultured with RAMP in vitro, the proliferation rate of lymphocytes was increased (P < 0.01), more cells in S phase and G2/M phase (P < 0.01) and the mRNA expression of IFN-γ was upregulated (P < 0.05), while the mRNA expression of TGF-β (P < 0.01) and IL-4 (P < 0.05) was downregulated and the CD4 +/CD8 + ratio was increased (P < 0.05). Transcriptomic results showed that RAMP increased the expression of HIST1H46 (P < 0.05) and CENPP (P < 0.05). Validation of qPCR showed that RAMP may play an important role in regulating cellular immunity by downregulating the Notch pathway. The results also showed that RAMP could increase the serum Newcastle disease virus antibody levels in chickens. These data suggest that RAMP could enhance immune function of lymphocytes and was a candidate vaccine adjuvant in chickens.
Collapse
Affiliation(s)
- Weidong Hu
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Rongchang, Chongqing 402460, PR China
| | - Kaiyue Huang
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Rongchang, Chongqing 402460, PR China
| | - Li Zhang
- Immunology Research Center, Medical Research Institute, Southwest University, Rongchang, Chongqing 402460, PR China
| | - Jingxuan Ni
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Rongchang, Chongqing 402460, PR China
| | - Wei Xu
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, MOA Key Laboratory of Animal Virology, Center for Veterinary Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
| | - Shicheng Bi
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Rongchang, Chongqing 402460, PR China.
| |
Collapse
|
2
|
Jia Y, Agbayani G, Chandan V, Iqbal U, Dudani R, Qian H, Jakubek Z, Chan K, Harrison B, Deschatelets L, Akache B, McCluskie MJ. Evaluation of Adjuvant Activity and Bio-Distribution of Archaeosomes Prepared Using Microfluidic Technology. Pharmaceutics 2022; 14:2291. [PMID: 36365110 PMCID: PMC9697222 DOI: 10.3390/pharmaceutics14112291] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 09/24/2023] Open
Abstract
Archaeosomes, composed of sulfated lactosyl archaeol (SLA) glycolipids, have been proven to be an effective vaccine adjuvant in multiple preclinical models of infectious disease or cancer. They have classically been prepared using a thin-film hydration method with an average particle size of 100-200 nm. In this study, we developed methods to generate SLA archaeosomes at different sizes, i.e., 30 nm and 100 nm, via microfluidic mixing technology and evaluated their physicochemical characteristics, as well as adjuvant activity and in vivo biodistribution in mice. Archaeosomes, prepared using thin-film and microfluidic mixing techniques, had similar nanostructures and physicochemical characteristics, with both appearing stable during the course of this study when stored at 4 °C or 37 °C. They also demonstrated similar adjuvant activity when admixed with ovalbumin antigen and used to immunize mice, generating equivalent antigen-specific immune responses. Archaeosomes, labeled with CellVueTM NIR815, had an equivalent biodistribution with both sizes, namely the highest signal at the injection site at 24 h post injection, followed by liver, spleen and inguinal lymph node. The presence of SLA archaeosomes of either size helped to retain OVA antigen (OVA-Cy5.5) longer at the injection site than unadjuvanted OVA. Overall, archaeosomes of two sizes (30 nm and 100 nm) prepared using microfluidic mixing maintained similar physicochemical properties, adjuvant activity and biodistribution of antigen, in comparison to those compared by the conventional thin film hydration method. This suggests that microfluidics based approaches could be applied to generate consistently sized archaeosomes for use as a vaccine adjuvant.
Collapse
Affiliation(s)
- Yimei Jia
- Human Health Therapeutics, National Research Council Canada, Ottawa, ON K1A0R6, Canada
| | - Gerard Agbayani
- Human Health Therapeutics, National Research Council Canada, Ottawa, ON K1A0R6, Canada
| | - Vandana Chandan
- Human Health Therapeutics, National Research Council Canada, Ottawa, ON K1A0R6, Canada
| | - Umar Iqbal
- Human Health Therapeutics, National Research Council Canada, Ottawa, ON K1A0R6, Canada
| | - Renu Dudani
- Human Health Therapeutics, National Research Council Canada, Ottawa, ON K1A0R6, Canada
| | - Hui Qian
- Nanotechnology Research Centre, National Research Council Canada, Edmonton, AB T6G2M9, Canada
| | - Zygmunt Jakubek
- Metrology Research Centre, National Research Council Canada, Ottawa, ON K1A0R6, Canada
| | - Kenneth Chan
- Human Health Therapeutics, National Research Council Canada, Ottawa, ON K1A0R6, Canada
| | - Blair Harrison
- Human Health Therapeutics, National Research Council Canada, Ottawa, ON K1A0R6, Canada
| | - Lise Deschatelets
- Human Health Therapeutics, National Research Council Canada, Ottawa, ON K1A0R6, Canada
| | - Bassel Akache
- Human Health Therapeutics, National Research Council Canada, Ottawa, ON K1A0R6, Canada
| | - Michael J. McCluskie
- Human Health Therapeutics, National Research Council Canada, Ottawa, ON K1A0R6, Canada
| |
Collapse
|
3
|
Régnier S, Lam E, Vasquez V, Martinez-Farina CF, Stark FC, Agbayani G, Deschatelets L, Dudani R, Harrison BA, Akache B, McCluskie MJ, Hemraz UD. Effect of Chiral Purity on Adjuvanticity of Archaeol-Based Glycolipids. J Med Chem 2022; 65:8332-8344. [PMID: 35658102 DOI: 10.1021/acs.jmedchem.2c00072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Archaeosomes composed of sulfated lactosyl archaeol (SLA) glycolipids from stereoisomerically pure archaeol (1) are vaccine adjuvants that can boost immunogenicity and vaccine efficacy in preclinical models. Herein, we report a new synthesis of 2,3-bis((3,7,11,15-tetramethylhexadecyl)oxy) propan-1-ol (3) by treating (±)-3-benzyloxy-1,2-propanediol with a mesylated phytol derivative through a double nucleophilic substitution reaction, followed by reductive debenzylation. Three SLA archaeosomes from archaeols of different chiral purities were prepared, and the effect of stereochemistry on their adjuvanticity toward ovalbumin was investigated. It was found that all SLA archaeosomes induced strong humoral and cell-mediated antigen-specific immune responses following immunization of C57BL/6NCrl mice, with no significant differences, irrespective of the chiral purities. The responses were comparable or better than those obtained using mimetics of approved adjuvants. The performance of SLA archaeosomes during immunization and their lack of dependence on the stereochemistry of archaeol points toward a promising, safe, scalable, and economically viable vaccine adjuvant system.
Collapse
Affiliation(s)
- Sophie Régnier
- Aquatic and Crop Resource Development, National Research Council of Canada, 6100 Royalmount Avenue, Montreal, Quebec H4P 2R2, Canada
| | - Edmond Lam
- Aquatic and Crop Resource Development, National Research Council of Canada, 6100 Royalmount Avenue, Montreal, Quebec H4P 2R2, Canada
| | - Vinicio Vasquez
- Aquatic and Crop Resource Development, National Research Council of Canada, 6100 Royalmount Avenue, Montreal, Quebec H4P 2R2, Canada
| | - Camilo F Martinez-Farina
- Aquatic and Crop Resource Development, National Research Council of Canada, 1411 Oxford Street, Halifax, Nova Scotia B3H 3Z1, Canada
| | - Felicity C Stark
- Human Health Therapeutics, National Research Council of Canada, 1200 Montreal Rd, Ottawa, Ontario K1A 0R6, Canada
| | - Gerard Agbayani
- Human Health Therapeutics, National Research Council of Canada, 1200 Montreal Rd, Ottawa, Ontario K1A 0R6, Canada
| | - Lise Deschatelets
- Human Health Therapeutics, National Research Council of Canada, 1200 Montreal Rd, Ottawa, Ontario K1A 0R6, Canada
| | - Renu Dudani
- Human Health Therapeutics, National Research Council of Canada, 1200 Montreal Rd, Ottawa, Ontario K1A 0R6, Canada
| | - Blair A Harrison
- Human Health Therapeutics, National Research Council of Canada, 1200 Montreal Rd, Ottawa, Ontario K1A 0R6, Canada
| | - Bassel Akache
- Human Health Therapeutics, National Research Council of Canada, 1200 Montreal Rd, Ottawa, Ontario K1A 0R6, Canada
| | - Michael J McCluskie
- Human Health Therapeutics, National Research Council of Canada, 1200 Montreal Rd, Ottawa, Ontario K1A 0R6, Canada
| | - Usha D Hemraz
- Aquatic and Crop Resource Development, National Research Council of Canada, 6100 Royalmount Avenue, Montreal, Quebec H4P 2R2, Canada
| |
Collapse
|
4
|
Akache B, Agbayani G, Stark FC, Jia Y, Dudani R, Harrison BA, Deschatelets L, Chandan V, Lam E, Hemraz UD, Régnier S, Krishnan L, McCluskie MJ. Sulfated Lactosyl Archaeol Archaeosomes Synergize with Poly(I:C) to Enhance the Immunogenicity and Efficacy of a Synthetic Long Peptide-Based Vaccine in a Melanoma Tumor Model. Pharmaceutics 2021; 13:pharmaceutics13020257. [PMID: 33673382 PMCID: PMC7918940 DOI: 10.3390/pharmaceutics13020257] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 12/17/2022] Open
Abstract
Cancer remains a leading cause of morbidity and mortality worldwide. While novel treatments have improved survival outcomes for some patients, new treatment modalities/platforms are needed to combat a wider variety of tumor types. Cancer vaccines harness the power of the immune system to generate targeted tumor-specific immune responses. Liposomes composed of glycolipids derived from archaea (i.e., archaeosomes) have been shown to be potent adjuvants, inducing robust, long-lasting humoral and cell-mediated immune responses to a variety of antigens. Herein, we evaluated the ability of archaeosomes composed of sulfated lactosyl archaeol (SLA), a semi-synthetic archaeal glycolipid, to enhance the immunogenicity of a synthetic long peptide-based vaccine formulation containing the dominant CD8+ T cell epitope, SIINFEKL, from the weakly immunogenic model antigen ovalbumin. One advantage of immunizing with long peptides is the ability to include multiple epitopes, for example, the long peptide antigen was also designed to include the immediately adjacent CD4+ epitope, TEWTSSNVMEER. SLA archaeosomes were tested alone or in combination with the toll-like receptor 3 (TLR3) agonist Poly(I:C). Overall, SLA archaeosomes synergized strongly with Poly(I:C) to induce robust antigen-specific CD8+ T cell responses, which were highly functional in an in vivo cytolytic assay. Furthermore, immunization with this vaccine formulation suppressed tumor growth and extended mouse survival in a mouse melanoma tumor model. Overall, the combination of SLA archaeosomes and Poly(I:C) appears to be a promising adjuvant system when used along with long peptide-based antigens targeting cancer.
Collapse
Affiliation(s)
- Bassel Akache
- Human Health Therapeutics, National Research Council Canada, Ottawa, ON K1A 0R6, Canada; (B.A.); (G.A.); (F.C.S.); (Y.J.); (R.D.); (B.A.H.); (L.D.); (V.C.); (L.K.)
| | - Gerard Agbayani
- Human Health Therapeutics, National Research Council Canada, Ottawa, ON K1A 0R6, Canada; (B.A.); (G.A.); (F.C.S.); (Y.J.); (R.D.); (B.A.H.); (L.D.); (V.C.); (L.K.)
| | - Felicity C. Stark
- Human Health Therapeutics, National Research Council Canada, Ottawa, ON K1A 0R6, Canada; (B.A.); (G.A.); (F.C.S.); (Y.J.); (R.D.); (B.A.H.); (L.D.); (V.C.); (L.K.)
| | - Yimei Jia
- Human Health Therapeutics, National Research Council Canada, Ottawa, ON K1A 0R6, Canada; (B.A.); (G.A.); (F.C.S.); (Y.J.); (R.D.); (B.A.H.); (L.D.); (V.C.); (L.K.)
| | - Renu Dudani
- Human Health Therapeutics, National Research Council Canada, Ottawa, ON K1A 0R6, Canada; (B.A.); (G.A.); (F.C.S.); (Y.J.); (R.D.); (B.A.H.); (L.D.); (V.C.); (L.K.)
| | - Blair A. Harrison
- Human Health Therapeutics, National Research Council Canada, Ottawa, ON K1A 0R6, Canada; (B.A.); (G.A.); (F.C.S.); (Y.J.); (R.D.); (B.A.H.); (L.D.); (V.C.); (L.K.)
| | - Lise Deschatelets
- Human Health Therapeutics, National Research Council Canada, Ottawa, ON K1A 0R6, Canada; (B.A.); (G.A.); (F.C.S.); (Y.J.); (R.D.); (B.A.H.); (L.D.); (V.C.); (L.K.)
| | - Vandana Chandan
- Human Health Therapeutics, National Research Council Canada, Ottawa, ON K1A 0R6, Canada; (B.A.); (G.A.); (F.C.S.); (Y.J.); (R.D.); (B.A.H.); (L.D.); (V.C.); (L.K.)
| | - Edmond Lam
- Aquatic and Crop Resource Development, National Research Council Canada, Montreal, QC H4P 2R2, Canada; (E.L.); (U.D.H.); (S.R.)
| | - Usha D. Hemraz
- Aquatic and Crop Resource Development, National Research Council Canada, Montreal, QC H4P 2R2, Canada; (E.L.); (U.D.H.); (S.R.)
| | - Sophie Régnier
- Aquatic and Crop Resource Development, National Research Council Canada, Montreal, QC H4P 2R2, Canada; (E.L.); (U.D.H.); (S.R.)
| | - Lakshmi Krishnan
- Human Health Therapeutics, National Research Council Canada, Ottawa, ON K1A 0R6, Canada; (B.A.); (G.A.); (F.C.S.); (Y.J.); (R.D.); (B.A.H.); (L.D.); (V.C.); (L.K.)
| | - Michael J. McCluskie
- Human Health Therapeutics, National Research Council Canada, Ottawa, ON K1A 0R6, Canada; (B.A.); (G.A.); (F.C.S.); (Y.J.); (R.D.); (B.A.H.); (L.D.); (V.C.); (L.K.)
- Correspondence: ; Tel.: +1-613-993-9774
| |
Collapse
|