1
|
de Alencar Morais Lima W, de Souza JG, García-Villén F, Loureiro JL, Raffin FN, Fernandes MAC, Souto EB, Severino P, Barbosa RDM. Next-generation pediatric care: nanotechnology-based and AI-driven solutions for cardiovascular, respiratory, and gastrointestinal disorders. World J Pediatr 2024:10.1007/s12519-024-00834-x. [PMID: 39192003 DOI: 10.1007/s12519-024-00834-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/21/2024] [Indexed: 08/29/2024]
Abstract
BACKGROUND Global pediatric healthcare reveals significant morbidity and mortality rates linked to respiratory, cardiac, and gastrointestinal disorders in children and newborns, mostly due to the complexity of therapeutic management in pediatrics and neonatology, owing to the lack of suitable dosage forms for these patients, often rendering them "therapeutic orphans". The development and application of pediatric drug formulations encounter numerous challenges, including physiological heterogeneity within age groups, limited profitability for the pharmaceutical industry, and ethical and clinical constraints. Many drugs are used unlicensed or off-label, posing a high risk of toxicity and reduced efficacy. Despite these circumstances, some regulatory changes are being performed, thus thrusting research innovation in this field. DATA SOURCES Up-to-date peer-reviewed journal articles, books, government and institutional reports, data repositories and databases were used as main data sources. RESULTS Among the main strategies proposed to address the current pediatric care situation, nanotechnology is specially promising for pediatric respiratory diseases since they offer a non-invasive, versatile, tunable, site-specific drug release. Tissue engineering is in the spotlight as strategy to address pediatric cardiac diseases, together with theragnostic systems. The integration of nanotechnology and theragnostic stands poised to refine and propel nanomedicine approaches, ushering in an era of innovative and personalized drug delivery for pediatric patients. Finally, the intersection of drug repurposing and artificial intelligence tools in pediatric healthcare holds great potential. This promises not only to enhance efficiency in drug development in general, but also in the pediatric field, hopefully boosting clinical trials for this population. CONCLUSIONS Despite the long road ahead, the deepening of nanotechnology, the evolution of tissue engineering, and the combination of traditional techniques with artificial intelligence are the most recently reported strategies in the specific field of pediatric therapeutics.
Collapse
Affiliation(s)
| | - Jackson G de Souza
- InovAI Lab, nPITI/IMD, Federal University of Rio Grande Do Norte, Natal, RN, 59078-970, Brazil
| | - Fátima García-Villén
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Granada, Campus of Cartuja, 18071, Granada, Spain.
| | - Julia Lira Loureiro
- Laboratory of Galenic Pharmacy, Department of Pharmacy, Federal University of Rio Grande Do Norte, Natal, 59012-570, Brazil
| | - Fernanda Nervo Raffin
- Laboratory of Galenic Pharmacy, Department of Pharmacy, Federal University of Rio Grande Do Norte, Natal, 59012-570, Brazil
| | - Marcelo A C Fernandes
- InovAI Lab, nPITI/IMD, Federal University of Rio Grande Do Norte, Natal, RN, 59078-970, Brazil
- Department of Computer Engineering and Automation, Federal University of Rio Grande Do Norte, Natal, RN, 59078-970, Brazil
| | - Eliana B Souto
- Laboratory of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Patricia Severino
- Industrial Biotechnology Program, University of Tiradentes (UNIT), Aracaju, Sergipe, 49032-490, Brazil
| | - Raquel de M Barbosa
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Seville, C/Professor García González, 2, 41012, Seville, Spain.
| |
Collapse
|
2
|
Bernava G, Iop L. Advances in the design, generation, and application of tissue-engineered myocardial equivalents. Front Bioeng Biotechnol 2023; 11:1247572. [PMID: 37811368 PMCID: PMC10559975 DOI: 10.3389/fbioe.2023.1247572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/29/2023] [Indexed: 10/10/2023] Open
Abstract
Due to the limited regenerative ability of cardiomyocytes, the disabling irreversible condition of myocardial failure can only be treated with conservative and temporary therapeutic approaches, not able to repair the damage directly, or with organ transplantation. Among the regenerative strategies, intramyocardial cell injection or intravascular cell infusion should attenuate damage to the myocardium and reduce the risk of heart failure. However, these cell delivery-based therapies suffer from significant drawbacks and have a low success rate. Indeed, cardiac tissue engineering efforts are directed to repair, replace, and regenerate native myocardial tissue function. In a regenerative strategy, biomaterials and biomimetic stimuli play a key role in promoting cell adhesion, proliferation, differentiation, and neo-tissue formation. Thus, appropriate biochemical and biophysical cues should be combined with scaffolds emulating extracellular matrix in order to support cell growth and prompt favorable cardiac microenvironment and tissue regeneration. In this review, we provide an overview of recent developments that occurred in the biomimetic design and fabrication of cardiac scaffolds and patches. Furthermore, we sift in vitro and in situ strategies in several preclinical and clinical applications. Finally, we evaluate the possible use of bioengineered cardiac tissue equivalents as in vitro models for disease studies and drug tests.
Collapse
Affiliation(s)
| | - Laura Iop
- Department of Cardiac Thoracic Vascular Sciences and Public Health, Padua Medical School, University of Padua, Padua, Italy
| |
Collapse
|
3
|
Alhejailan RS, Garoffolo G, Raveendran VV, Pesce M. Cells and Materials for Cardiac Repair and Regeneration. J Clin Med 2023; 12:jcm12103398. [PMID: 37240504 DOI: 10.3390/jcm12103398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
After more than 20 years following the introduction of regenerative medicine to address the problem of cardiac diseases, still questions arise as to the best cell types and materials to use to obtain effective clinical translation. Now that it is definitively clear that the heart does not have a consistent reservoir of stem cells that could give rise to new myocytes, and that there are cells that could contribute, at most, with their pro-angiogenic or immunomodulatory potential, there is fierce debate on what will emerge as the winning strategy. In this regard, new developments in somatic cells' reprogramming, material science and cell biophysics may be of help, not only for protecting the heart from the deleterious consequences of aging, ischemia and metabolic disorders, but also to boost an endogenous regeneration potential that seems to be lost in the adulthood of the human heart.
Collapse
Affiliation(s)
- Reem Saud Alhejailan
- Cell Biology Department, King's Faisal Specialist Hospital & Research Center, Riyadh 11564, Saudi Arabia
| | - Gloria Garoffolo
- Unità di Ingegneria Tissutale Cardiovascolare, Centro Cardiologico Monzino, IRCCS, 20138 Milan, Italy
| | - Vineesh Vimala Raveendran
- Cell Biology Department, King's Faisal Specialist Hospital & Research Center, Riyadh 11564, Saudi Arabia
| | - Maurizio Pesce
- Unità di Ingegneria Tissutale Cardiovascolare, Centro Cardiologico Monzino, IRCCS, 20138 Milan, Italy
| |
Collapse
|
4
|
Aziz R, Falanga M, Purenovic J, Mancini S, Lamberti P, Guida M. A Review on the Applications of Natural Biodegradable Nano Polymers in Cardiac Tissue Engineering. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1374. [PMID: 37110959 PMCID: PMC10145986 DOI: 10.3390/nano13081374] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 06/19/2023]
Abstract
As cardiac diseases, which mostly result in heart failure, are increasing rapidly worldwide, heart transplantation seems the only solution for saving lives. However, this practice is not always possible due to several reasons, such as scarcity of donors, rejection of organs from recipient bodies, or costly medical procedures. In the framework of nanotechnology, nanomaterials greatly contribute to the development of these cardiovascular scaffolds as they provide an easy regeneration of the tissues. Currently, functional nanofibers can be used in the production of stem cells and in the regeneration of cells and tissues. The small size of nanomaterials, however, leads to changes in their chemical and physical characteristics that could alter their interaction and exposure to stem cells with cells and tissues. This article aims to review the naturally occurring biodegradable nanomaterials that are used in cardiovascular tissue engineering for the development of cardiac patches, vessels, and tissues. Moreover, this article also provides an overview of cell sources used for cardiac tissue engineering, explains the anatomy and physiology of the human heart, and explores the regeneration of cardiac cells and the nanofabrication approaches used in cardiac tissue engineering as well as scaffolds.
Collapse
Affiliation(s)
- Rabia Aziz
- Department of Information and Electrical Engineering and Applied Mathematics (DIEM), University of Salerno, 84084 Fisciano, Italy; (M.F.); (S.M.); (P.L.); (M.G.)
- Consiglio Nazionale Delle Ricerche (CNR)-Istituto Officina dei Materiali (IOM), Area Science Park Basovizza S.S. 14-Km. 163, 5-34149 Trieste, Italy
| | - Mariarosaria Falanga
- Department of Information and Electrical Engineering and Applied Mathematics (DIEM), University of Salerno, 84084 Fisciano, Italy; (M.F.); (S.M.); (P.L.); (M.G.)
| | - Jelena Purenovic
- Department of Physics and Materials, Faculty of Sciences at Cacak, University of Kragujevac, 32000 Cacak, Serbia;
| | - Simona Mancini
- Department of Information and Electrical Engineering and Applied Mathematics (DIEM), University of Salerno, 84084 Fisciano, Italy; (M.F.); (S.M.); (P.L.); (M.G.)
| | - Patrizia Lamberti
- Department of Information and Electrical Engineering and Applied Mathematics (DIEM), University of Salerno, 84084 Fisciano, Italy; (M.F.); (S.M.); (P.L.); (M.G.)
- Italian Interuniversity Research Center on Interaction between Electromagnetic Fields and Biosystems (ICEmB), Università Degli Studi di Genova, DITEN, Via all’Opera Pia 11/a, 16145 Genova, Italy
- Interdepartmental Research Centre for Nanomaterials and Nanotechnology at the University of Salerno (NanoMates), Department of Physics, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| | - Michele Guida
- Department of Information and Electrical Engineering and Applied Mathematics (DIEM), University of Salerno, 84084 Fisciano, Italy; (M.F.); (S.M.); (P.L.); (M.G.)
- Italian Interuniversity Research Center on Interaction between Electromagnetic Fields and Biosystems (ICEmB), Università Degli Studi di Genova, DITEN, Via all’Opera Pia 11/a, 16145 Genova, Italy
| |
Collapse
|
5
|
Qiu J, Liu XJ, You BA, Ren N, Liu H. Application of Nanomaterials in Stem Cell-Based Therapeutics for Cardiac Repair and Regeneration. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206487. [PMID: 36642861 DOI: 10.1002/smll.202206487] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Cardiovascular disease is a leading cause of disability and death worldwide. Although the survival rate of patients with heart diseases can be improved with contemporary pharmacological treatments and surgical procedures, none of these therapies provide a significant improvement in cardiac repair and regeneration. Stem cell-based therapies are a promising approach for functional recovery of damaged myocardium. However, the available stem cells are difficult to differentiate into cardiomyocytes, which result in the extremely low transplantation efficiency. Nanomaterials are widely used to regulate the myocardial differentiation of stem cells, and play a very important role in cardiac tissue engineering. This study discusses the current status and limitations of stem cells and cell-derived exosomes/micro RNAs based cardiac therapy, describes the cardiac repair mechanism of nanomaterials, summarizes the recent advances in nanomaterials used in cardiac repair and regeneration, and evaluates the advantages and disadvantages of the relevant nanomaterials. Besides discussing the potential clinical applications of nanomaterials in cardiac therapy, the perspectives and challenges of nanomaterials used in stem cell-based cardiac repair and regeneration are also considered. Finally, new research directions in this field are proposed, and future research trends are highlighted.
Collapse
Affiliation(s)
- Jie Qiu
- Medical Research Institute, Jinan Nanjiao Hospital, Jinan, 250002, P. R. China
| | - Xiang-Ju Liu
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan, 250012, P. R. China
| | - Bei-An You
- Department of Cardiovascular Center, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Jinan, 266035, P. R. China
| | - Na Ren
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, P. R. China
| | - Hong Liu
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, P. R. China
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| |
Collapse
|
6
|
Mu L, Dong R, Guo B. Biomaterials-Based Cell Therapy for Myocardial Tissue Regeneration. Adv Healthc Mater 2022; 12:e2202699. [PMID: 36572412 DOI: 10.1002/adhm.202202699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/11/2022] [Indexed: 12/28/2022]
Abstract
Cardiovascular diseases (CVDs) have been the leading cause of death worldwide during the past several decades. Cell loss is the main problem that results in cardiac dysfunction and further mortality. Cell therapy aiming to replenish the lost cells is proposed to treat CVDs especially ischemic heart diseases which lead to a big portion of cell loss. Due to the direct injection's low cell retention and survival ratio, cell therapy using biomaterials as cell carriers has attracted more and more attention because of their promotion of cell delivery and maintenance at the aiming sites. In this review, the three main factors involved in cell therapy for myocardial tissue regeneration: cell sources (somatic cells, stem cells, and engineered cells), chemical components of cell carriers (natural materials, synthetic materials, and electroactive materials), and categories of cell delivery materials (patches, microspheres, injectable hydrogels, nanofiber and microneedles, etc.) are systematically summarized. An introduction of the methods including magnetic resonance/radionuclide/photoacoustic and fluorescence imaging for tracking the behavior of transplanted cells in vivo is also included. Current challenges of biomaterials-based cell therapy and their future directions are provided to give both beginners and professionals a clear view of the development and future trends in this area.
Collapse
Affiliation(s)
- Lei Mu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Ruonan Dong
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Baolin Guo
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, China.,State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
7
|
Gisone I, Cecchettini A, Ceccherini E, Persiani E, Morales MA, Vozzi F. Cardiac tissue engineering: Multiple approaches and potential applications. Front Bioeng Biotechnol 2022; 10:980393. [PMID: 36263357 PMCID: PMC9574555 DOI: 10.3389/fbioe.2022.980393] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/26/2022] [Indexed: 11/17/2022] Open
Abstract
The overall increase in cardiovascular diseases and, specifically, the ever-rising exposure to cardiotoxic compounds has greatly increased in vivo animal testing; however, mainly due to ethical concerns related to experimental animal models, there is a strong interest in new in vitro models focused on the human heart. In recent years, human pluripotent stem cells-derived cardiomyocytes (hiPSC-CMs) emerged as reference cell systems for cardiac studies due to their biological similarity to primary CMs, the flexibility in cell culture protocols, and the capability to be amplified several times. Furthermore, the ability to be genetically reprogrammed makes patient-derived hiPSCs, a source for studies on personalized medicine. In this mini-review, the different models used for in vitro cardiac studies will be described, and their pros and cons analyzed to help researchers choose the best fitting model for their studies. Particular attention will be paid to hiPSC-CMs and three-dimensional (3D) systems since they can mimic the cytoarchitecture of the human heart, reproducing its morphological, biochemical, and mechanical features. The advantages of 3D in vitro heart models compared to traditional 2D cell cultures will be discussed, and the differences between scaffold-free and scaffold-based systems will also be spotlighted.
Collapse
Affiliation(s)
- Ilaria Gisone
- Institute of Clinical Physiology, National Research Council (CNR), Pisa, Italy
| | - Antonella Cecchettini
- Institute of Clinical Physiology, National Research Council (CNR), Pisa, Italy
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Elisa Ceccherini
- Institute of Clinical Physiology, National Research Council (CNR), Pisa, Italy
| | - Elisa Persiani
- Institute of Clinical Physiology, National Research Council (CNR), Pisa, Italy
| | | | - Federico Vozzi
- Institute of Clinical Physiology, National Research Council (CNR), Pisa, Italy
- *Correspondence: Federico Vozzi,
| |
Collapse
|
8
|
Bansal J, Neuman K, Greene VK, Rubenstein DA. Development of 3D Printed Electrospun Scaffolds for the Fabrication of Porous Scaffolds for Vascular Applications. 3D PRINTING AND ADDITIVE MANUFACTURING 2022; 9:380-388. [PMID: 36660297 PMCID: PMC9831558 DOI: 10.1089/3dp.2020.0337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Over the past two decades, electrospinning has emerged as a common technique to produce biomedical scaffolds composed of ultrafine fibers formed from many natural and synthetic polymers. A major advantage of this technique is the ability to produce scaffolds that resemble the native extracellular matrix in physical, chemical, and topological properties. However, scaffolds fabricated via electrospinning are not formed with a controlled architecture and typically do a poor job of directing cell growth into prescribed structures for tissue/organ development. To address these weaknesses, 3D bioprinting has recently been used to develop scaffolds that have a highly organized and precise global topology. Unfortunately, these 3D bioprinted scaffolds do not typically resemble the native extracellular matrix in physical properties, such as porosity, fiber diameter, and pore size (e.g., the microarchitecture). Thus, the goal of the current study was to develop a technique that harnesses the intrinsic advantages of both conventional electrospinning and 3D bioprinting techniques to produce scaffolds that have the potential to be used within biomedical applications. The physical properties of formed 3D printed electrospun scaffolds were compared with conventional electrospun and 3D printed scaffolds. Further, we conducted initial proof-of-concept biocompatibility studies to illustrate the applicability of the scaffolds within vascular applications. Our results illustrate that 3D printed electrospun scaffolds can be developed, via our technique, that have highly tailored and organized arbitrary geometries with scaffold properties in the range of the innate extracellular matrix. In addition, these scaffolds were shown to support endothelial cell growth. Therefore, we illustrate the development and testing of a novel bioscaffold fabrication technique that may be used for many tissue engineering and regenerative medicine applications, which allows for the direct printing of electrospun scaffolds into well-defined macro-scale geometries that also retain the micro-structures commonly observed in electrospun scaffolds.
Collapse
Affiliation(s)
- Jahnvi Bansal
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York, USA
| | - Katelyn Neuman
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York, USA
| | - Vaughn K. Greene
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York, USA
| | - David A. Rubenstein
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
9
|
Roacho-Pérez JA, Garza-Treviño EN, Moncada-Saucedo NK, Carriquiry-Chequer PA, Valencia-Gómez LE, Matthews ER, Gómez-Flores V, Simental-Mendía M, Delgado-Gonzalez P, Delgado-Gallegos JL, Padilla-Rivas GR, Islas JF. Artificial Scaffolds in Cardiac Tissue Engineering. Life (Basel) 2022; 12:1117. [PMID: 35892919 PMCID: PMC9331725 DOI: 10.3390/life12081117] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/08/2022] [Accepted: 07/22/2022] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular diseases are a leading cause of death worldwide. Current treatments directed at heart repair have several disadvantages, such as a lack of donors for heart transplantation or non-bioactive inert materials for replacing damaged tissue. Because of the natural lack of regeneration of cardiomyocytes, new treatment strategies involve stimulating heart tissue regeneration. The basic three elements of cardiac tissue engineering (cells, growth factors, and scaffolds) are described in this review, with a highlight on the role of artificial scaffolds. Scaffolds for cardiac tissue engineering are tridimensional porous structures that imitate the extracellular heart matrix, with the ability to promote cell adhesion, migration, differentiation, and proliferation. In the heart, there is an important requirement to provide scaffold cellular attachment, but scaffolds also need to permit mechanical contractility and electrical conductivity. For researchers working in cardiac tissue engineering, there is an important need to choose an adequate artificial scaffold biofabrication technique, as well as the ideal biocompatible biodegradable biomaterial for scaffold construction. Finally, there are many suitable options for researchers to obtain scaffolds that promote cell-electrical interactions and tissue repair, reaching the goal of cardiac tissue engineering.
Collapse
Affiliation(s)
- Jorge A. Roacho-Pérez
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico; (J.A.R.-P.); (E.N.G.-T.); (P.A.C.-C.); (P.D.-G.); (J.L.D.-G.); (G.R.P.-R.)
| | - Elsa N. Garza-Treviño
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico; (J.A.R.-P.); (E.N.G.-T.); (P.A.C.-C.); (P.D.-G.); (J.L.D.-G.); (G.R.P.-R.)
| | - Nidia K. Moncada-Saucedo
- Servicio de Hematología, University Hospital “Dr. José Eleuterio González”, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico;
| | - Pablo A. Carriquiry-Chequer
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico; (J.A.R.-P.); (E.N.G.-T.); (P.A.C.-C.); (P.D.-G.); (J.L.D.-G.); (G.R.P.-R.)
| | - Laura E. Valencia-Gómez
- Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez 32310, Mexico; (L.E.V.-G.); (V.G.-F.)
| | - Elizabeth Renee Matthews
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA;
| | - Víctor Gómez-Flores
- Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez 32310, Mexico; (L.E.V.-G.); (V.G.-F.)
| | - Mario Simental-Mendía
- Orthopedic Trauma Service, University Hospital “Dr. José Eleuterio González”, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico;
| | - Paulina Delgado-Gonzalez
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico; (J.A.R.-P.); (E.N.G.-T.); (P.A.C.-C.); (P.D.-G.); (J.L.D.-G.); (G.R.P.-R.)
| | - Juan Luis Delgado-Gallegos
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico; (J.A.R.-P.); (E.N.G.-T.); (P.A.C.-C.); (P.D.-G.); (J.L.D.-G.); (G.R.P.-R.)
| | - Gerardo R. Padilla-Rivas
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico; (J.A.R.-P.); (E.N.G.-T.); (P.A.C.-C.); (P.D.-G.); (J.L.D.-G.); (G.R.P.-R.)
| | - Jose Francisco Islas
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico; (J.A.R.-P.); (E.N.G.-T.); (P.A.C.-C.); (P.D.-G.); (J.L.D.-G.); (G.R.P.-R.)
| |
Collapse
|
10
|
Huang W, Huo M, Cheng N, Wang R. New Forms of Electrospun Nanofibers Applied in Cardiovascular Field. Front Cardiovasc Med 2022; 8:801077. [PMID: 35127862 PMCID: PMC8814313 DOI: 10.3389/fcvm.2021.801077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 12/29/2021] [Indexed: 11/29/2022] Open
Abstract
Cardiovascular disease (CVD) is one of the leading causes of death worldwide. In recent years, regenerative medicine, tissue engineering and the development of new materials have become the focus of attention this field, and electrospinning technology to prepare nanofibrous materials for the treatment of cardiovascular diseases has attracted people's attention. Unlike previous reviews, this research enumerates the experimental methods and applications of electrospinning technology combined with nanofibrous materials in the directions of myocardial infarction repair, artificial heart valves, artificial blood vessels and cardiovascular patches from the perspective of cardiovascular surgery. In the end, this review also summarizes the limitations, unresolved technical challenges, and possible future directions of this technology for cardiovascular disease applications.
Collapse
Affiliation(s)
- Weimin Huang
- Baotou Clinical Medical College, Inner Mongolia Medical University, Hohhot, China
- Department of Cardiac Surgery, Chinese PLA General Hospital, Beijing, China
| | - Mengen Huo
- Institute of Poisons and Drugs, Beijing Academy of Military Medical Sciences, Beijing, China
| | - Nan Cheng
- Department of Cardiac Surgery, Chinese PLA General Hospital, Beijing, China
| | - Rong Wang
- Department of Cardiac Surgery, Chinese PLA General Hospital, Beijing, China
- *Correspondence: Rong Wang
| |
Collapse
|
11
|
Zhao X, Niu Y, Mi C, Gong H, Yang X, Cheng J, Zhou Z, Liu J, Peng X, Wei D. Electrospinning nanofibers of microbial polyhydroxyalkanoates for applications in medical tissue engineering. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210418] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Xiao‐Hong Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine Northwest University Xi'an China
| | - Yi‐Nuo Niu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine Northwest University Xi'an China
| | - Chen‐Hui Mi
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine Northwest University Xi'an China
| | - Hai‐Lun Gong
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine Northwest University Xi'an China
| | - Xin‐Yu Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine Northwest University Xi'an China
| | - Ji‐Si‐Yu Cheng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine Northwest University Xi'an China
| | - Zi‐Qi Zhou
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine Northwest University Xi'an China
| | - Jia‐Xuan Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine Northwest University Xi'an China
| | - Xue‐Liang Peng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine Northwest University Xi'an China
| | - Dai‐Xu Wei
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine Northwest University Xi'an China
| |
Collapse
|
12
|
Advanced Multi-Dimensional Cellular Models as Emerging Reality to Reproduce In Vitro the Human Body Complexity. Int J Mol Sci 2021; 22:ijms22031195. [PMID: 33530487 PMCID: PMC7865724 DOI: 10.3390/ijms22031195] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/19/2021] [Accepted: 01/22/2021] [Indexed: 02/07/2023] Open
Abstract
A hot topic in biomedical science is the implementation of more predictive in vitro models of human tissues to significantly improve the knowledge of physiological or pathological process, drugs discovery and screening. Bidimensional (2D) culture systems still represent good high-throughput options for basic research. Unfortunately, these systems are not able to recapitulate the in vivo three-dimensional (3D) environment of native tissues, resulting in a poor in vitro–in vivo translation. In addition, intra-species differences limited the use of animal data for predicting human responses, increasing in vivo preclinical failures and ethical concerns. Dealing with these challenges, in vitro 3D technological approaches were recently bioengineered as promising platforms able to closely capture the complexity of in vivo normal/pathological tissues. Potentially, such systems could resemble tissue-specific extracellular matrix (ECM), cell–cell and cell–ECM interactions and specific cell biological responses to mechanical and physical/chemical properties of the matrix. In this context, this review presents the state of the art of the most advanced progresses of the last years. A special attention to the emerging technologies for the development of human 3D disease-relevant and physiological models, varying from cell self-assembly (i.e., multicellular spheroids and organoids) to the use of biomaterials and microfluidic devices has been given.
Collapse
|