1
|
Spick M, Muazzam A, Pandha H, Michael A, Gethings LA, Hughes CJ, Munjoma N, Plumb RS, Wilson ID, Whetton AD, Townsend PA, Geifman N. Multi-omic diagnostics of prostate cancer in the presence of benign prostatic hyperplasia. Heliyon 2023; 9:e22604. [PMID: 38076065 PMCID: PMC10709398 DOI: 10.1016/j.heliyon.2023.e22604] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/01/2023] [Accepted: 11/15/2023] [Indexed: 09/11/2024] Open
Abstract
There is an unmet need for improved diagnostic testing and risk prediction for cases of prostate cancer (PCa) to improve care and reduce overtreatment of indolent disease. Here we have analysed the serum proteome and lipidome of 262 study participants by liquid chromatography-mass spectrometry, including participants diagnosed with PCa, benign prostatic hyperplasia (BPH), or otherwise healthy volunteers, with the aim of improving biomarker specificity. Although a two-class machine learning model separated PCa from controls with sensitivity of 0.82 and specificity of 0.95, adding BPH resulted in a statistically significant decline in specificity for prostate cancer to 0.76, with half of BPH cases being misclassified by the model as PCa. A small number of biomarkers differentiating between BPH and prostate cancer were identified, including proteins in MAP Kinase pathways, as well as in lipids containing oleic acid; these may offer a route to greater specificity. These results highlight, however, that whilst there are opportunities for machine learning, these will only be achieved by use of appropriate training sets that include confounding comorbidities, especially when calculating the specificity of a test.
Collapse
Affiliation(s)
- Matt Spick
- School of Health Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, GU2 7YH, United Kingdom
| | - Ammara Muazzam
- The Hospital for Sick Children (SickKids), 555 University Ave, Toronto, ON M5G 1X8, Canada
- Division of Cancer Sciences, Manchester Cancer Research Center, Manchester Academic Health Sciences Center, University of Manchester, Manchester, M20 4GJ, United Kingdom
| | - Hardev Pandha
- School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, GU2 7XH, United Kingdom
| | - Agnieszka Michael
- School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, GU2 7XH, United Kingdom
| | - Lee A. Gethings
- School of Health Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, GU2 7YH, United Kingdom
- Waters Corporation, Wilmslow, Cheshire, SK9 4AX, United Kingdom
- Manchester Institute of Biotechnology, Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PL, United Kingdom
| | | | | | - Robert S. Plumb
- Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College, Burlington Danes Building, Du Cane Road, London, W12 0NN, United Kingdom
| | - Ian D. Wilson
- Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College, Burlington Danes Building, Du Cane Road, London, W12 0NN, United Kingdom
| | - Anthony D. Whetton
- Veterinary Health Innovation Engine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, GU2 7YH, United Kingdom
- School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, GU2 7YH, United Kingdom
- Division of Cancer Sciences, Manchester Cancer Research Center, Manchester Academic Health Sciences Center, University of Manchester, Manchester, M20 4GJ, United Kingdom
| | - Paul A. Townsend
- School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, GU2 7XH, United Kingdom
- Division of Cancer Sciences, Manchester Cancer Research Center, Manchester Academic Health Sciences Center, University of Manchester, Manchester, M20 4GJ, United Kingdom
| | - Nophar Geifman
- School of Health Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, GU2 7YH, United Kingdom
| |
Collapse
|
2
|
Frazer-Abel A, Kirschfink M, Prohászka Z. Expanding Horizons in Complement Analysis and Quality Control. Front Immunol 2021; 12:697313. [PMID: 34434189 PMCID: PMC8381195 DOI: 10.3389/fimmu.2021.697313] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/19/2021] [Indexed: 01/09/2023] Open
Abstract
Complement not only plays a key role in host microbial defense but also modulates the adaptive immune response through modification of T- and B-cell reactivity. Moreover, a normally functioning complement system participates in hematopoiesis, reproduction, lipid metabolism, and tissue regeneration. Because of its powerful inflammatory potential, multiple regulatory proteins are needed to prevent potential tissue damage. In clinical practice, dysregulation and overactivation of the complement system are major causes of a variety of inflammatory and autoimmune diseases ranging from nephropathies, age-related macular degeneration (AMD), and systemic lupus erythematosus (SLE) to graft rejection, sepsis, and multi-organ failure. The clinical importance is reflected by the recent development of multiple drugs targeting complement with a broad spectrum of indications. The recognition of the role of complement in diverse diseases and the advent of complement therapeutics has increased the number of laboratories and suppliers entering the field. This has highlighted the need for reliable complement testing. The relatively rapid expansion in complement testing has presented challenges for a previously niche field. This is exemplified by the issue of cross-reactivity of complement-directed antibodies and by the challenges of the poor stability of many of the complement analytes. The complex nature of complement testing and increasing clinical demand has been met in the last decade by efforts to improve the standardization among laboratories. Initiated by the IUIS/ICS Committee for the Standardization and Quality Assessment in Complement Measurements 14 rounds of external quality assessment since 2010 resulted in improvements in the consistency of testing across participating institutions, while extending the global reach of the efforts to more than 200 laboratories in 30 countries. Worldwide trends of assay availability, usage, and analytical performance are summarized based on the past years’ experiences. Progress in complement analysis has been facilitated by the quality assessment and standardization efforts that now allow complement testing to provide a comprehensive insight into deficiencies and the activation state of the system. This in turn enables clinicians to better define disease severity, evolution, and response to therapy.
Collapse
Affiliation(s)
| | | | - Zoltán Prohászka
- Department of Medicine and Hematology, Research Laboratory Semmelweis University, Budapest, Hungary
| |
Collapse
|