1
|
Liang Y, Wang X, Chen Y, Zeng X, Liu J, Zhao Z, Yang H, Zhang Q, Li J, Guo Z, Zhang X. Development and Evaluation of [ 68Ga]Ga-Labeled Riboflavin Derivative for RFVT3-Targeted PET Imaging of Melanoma in Mice. Mol Pharm 2024; 21:4960-4969. [PMID: 39279392 DOI: 10.1021/acs.molpharmaceut.4c00209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
The limited progress in treatment options and the alarming survival rates in advanced melanoma emphasize the significant research importance of early melanoma diagnosis. RFVT3, a crucial protein at the core of energy metabolism reprogramming in melanoma, might play a pivotal role in early detection. In this study, [68Ga]Ga-NOTA-RF, based on riboflavin (RF), was rationally developed and validated, serving as an innovative tool for positron emission tomography (PET) imaging of RFVT3 expression in melanoma. The in vitro assays of RFVT3 specificity of [68Ga]Ga-NOTA-RF were performed on B16F10 melanoma cells. Then, PET imaging of melanoma was investigated in B16F10 allograft mouse models with varying volumes. Biodistribution studies are used to clarify the behavior of [68Ga]Ga-NOTA-RF in vivo. [68Ga]Ga-NOTA-RF was obtained with high radiochemical purity (>95%). A significant uptake (37.79 ± 6.86%, n = 4) of [68Ga]Ga-NOTA-RF was observed over time in B16F10 melanoma cells, which was significantly inhibited by RFVT3 inhibitors RF or methylene blue (MB), demonstrating the specific binding of [68Ga]Ga-NOTA-RF. At 60 min postinjection, the tumor-to-muscle (T/M) ratio of [68Ga]Ga-NOTA-RF was 4.03 ± 0.34, higher than that of the RF-blocked group (2.63 ± 0.19) and MB-blocked group (2.14 ± 0.20). The T/M ratios for three distinct tumor volumes-small (5 mm), medium (10 mm), and large (15 mm) were observed to be 5.25 ± 0.28, 4.03 ± 0.34, and 3.19 ± 0.55, respectively. The expression of RFVT3 was validated by immunohistochemical staining in various tumor models, with small B16F10 tumors exhibiting the highest expression. [68Ga]Ga-NOTA-RF demonstrates promising properties for the early diagnosis of melanoma and the examination of minute metastatic lesions, indicating its potential to assist in guiding clinical treatment decisions.
Collapse
Affiliation(s)
- Yuanyuan Liang
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory School of Public Health, Xiamen University, 4221-116 Xiang'An South Rd, Xiamen 361102, China
| | - Xueqi Wang
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory School of Public Health, Xiamen University, 4221-116 Xiang'An South Rd, Xiamen 361102, China
| | - Yingxi Chen
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory School of Public Health, Xiamen University, 4221-116 Xiang'An South Rd, Xiamen 361102, China
| | - Xinying Zeng
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory School of Public Health, Xiamen University, 4221-116 Xiang'An South Rd, Xiamen 361102, China
| | - Jia Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory School of Public Health, Xiamen University, 4221-116 Xiang'An South Rd, Xiamen 361102, China
| | - Zuoquan Zhao
- Theranostics and Translational Research Center, Institute of Clinical Medicine & Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Dongcheng District, Beijing 100730, China
| | - Hongzhang Yang
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory School of Public Health, Xiamen University, 4221-116 Xiang'An South Rd, Xiamen 361102, China
| | - Qinglin Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory School of Public Health, Xiamen University, 4221-116 Xiang'An South Rd, Xiamen 361102, China
| | - Jindian Li
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Zhide Guo
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory School of Public Health, Xiamen University, 4221-116 Xiang'An South Rd, Xiamen 361102, China
| | - Xianzhong Zhang
- Theranostics and Translational Research Center, Institute of Clinical Medicine & Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Dongcheng District, Beijing 100730, China
| |
Collapse
|
2
|
Wang T, Xu P, Fang J, Li C, Zeng X, Liu J, Meng L, Zhuang R, Zhang X, Su X, Guo Z. Synthesis and Preclinical Evaluation of a 68Ga-Labeled Pyridine-Based Benzamide Dimer for Malignant Melanoma Imaging. Mol Pharm 2023; 20:1015-1024. [PMID: 36562303 DOI: 10.1021/acs.molpharmaceut.2c00745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Benzamide (BZA), a small molecule that can freely cross cell membranes and bind to melanin, has served as an effective targeting group for melanoma theranostics. In this study, a novel pyridine-based BZA dimer (denoted as H-2) was labeled with 68Ga ([68Ga]Ga-H-2) for positron emission tomography (PET) imaging of malignant melanomas. [68Ga]Ga-H-2 was obtained with high radiochemical yield (98.0 ± 2.0%) and satisfactory radiochemical purity (>95.0%). The specificity and affinity of [68Ga]Ga-H-2 were confirmed in melanoma B16F10 cells and in vivo PET imaging of multiple tumor models (B16F10 tumors, A375 melanoma, and lung metastases). Monomeric [68Ga]Ga-H-1 was prepared as a control radiotracer to verify the effects of the molecular structure on pharmacokinetics. The values of the lipid-water partition coefficient of [68Ga]Ga-H-2 and [68Ga]Ga-H-1 demonstrated hydrophilicity with log P = -2.37 ± 0.07 and -2.02 ± 0.09, respectively. PET imaging and biodistribution showed a higher uptake of [68Ga]Ga-H-2 in B16F10 primary and metastatic melanomas than that in A375 melanomas. However, the relatively low uptake of monomeric [68Ga]Ga-H-1 in B16F10 tumors and high accumulation in nontarget organs resulted in poor PET imaging quality. This study demonstrates the synthesis and preclinical evaluation of the novel pyridine-based BZA dimer [68Ga]Ga-H-2 and indicates that the dimer tracer has promising applications in malignant melanoma-specific PET imaging because of its high uptake and long-time retention in malignant melanoma.
Collapse
Affiliation(s)
- Tingting Wang
- Department of Nuclear Medicine, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361004, China.,PET Center, Department of Nuclear Medicine, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou 310003, China.,State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, 4221-116 Xiang'An South Rd, Xiamen 361102, China
| | - Pengfei Xu
- Institute of Clinical Pharmacy & Pharmacology, Jining First People's Hospital, Jining Medical University, Jining 272000, China
| | - Jianyang Fang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, 4221-116 Xiang'An South Rd, Xiamen 361102, China
| | - Cijuan Li
- Department of Nuclear Medicine, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361004, China
| | - Xinying Zeng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, 4221-116 Xiang'An South Rd, Xiamen 361102, China
| | - Jia Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, 4221-116 Xiang'An South Rd, Xiamen 361102, China
| | - Lingxin Meng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, 4221-116 Xiang'An South Rd, Xiamen 361102, China
| | - Rongqiang Zhuang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, 4221-116 Xiang'An South Rd, Xiamen 361102, China
| | - Xianzhong Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, 4221-116 Xiang'An South Rd, Xiamen 361102, China
| | - Xinhui Su
- Department of Nuclear Medicine, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361004, China.,PET Center, Department of Nuclear Medicine, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou 310003, China
| | - Zhide Guo
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, 4221-116 Xiang'An South Rd, Xiamen 361102, China
| |
Collapse
|
3
|
Translating Molecules into Imaging—The Development of New PET Tracers for Patients with Melanoma. Diagnostics (Basel) 2022; 12:diagnostics12051116. [PMID: 35626272 PMCID: PMC9139963 DOI: 10.3390/diagnostics12051116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/22/2022] [Accepted: 04/27/2022] [Indexed: 01/27/2023] Open
Abstract
Melanoma is a deadly disease that often exhibits relentless progression and can have both early and late metastases. Recent advances in immunotherapy and targeted therapy have dramatically increased patient survival for patients with melanoma. Similar advances in molecular targeted PET imaging can identify molecular pathways that promote disease progression and therefore offer physiological information. Thus, they can be used to assess prognosis, tumor heterogeneity, and identify instances of treatment failure. Numerous agents tested preclinically and clinically demonstrate promising results with high tumor-to-background ratios in both primary and metastatic melanoma tumors. Here, we detail the development and testing of multiple molecular targeted PET-imaging agents, including agents for general oncological imaging and those specifically for PET imaging of melanoma. Of the numerous radiopharmaceuticals evaluated for this purpose, several have made it to clinical trials and showed promising results. Ultimately, these agents may become the standard of care for melanoma imaging if they are able to demonstrate micrometastatic disease and thus provide more accurate information for staging. Furthermore, these agents provide a more accurate way to monitor response to therapy. Patients will be able to receive treatment based on tumor uptake characteristics and may be able to be treated earlier for lesions that with traditional imaging would be subclinical, overall leading to improved outcomes for patients.
Collapse
|