1
|
Hessin C, Schleinitz J, Le Breton N, Choua S, Grimaud L, Fourmond V, Desage-El Murr M, Léger C. Assessing the Extent of Potential Inversion by Cyclic Voltammetry: Theory, Pitfalls, and Application to a Nickel Complex with Redox-Active Iminosemiquinone Ligands. Inorg Chem 2023; 62:3321-3332. [PMID: 36780646 DOI: 10.1021/acs.inorgchem.2c04365] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Potential inversion refers to the situation where a protein cofactor or a synthetic molecule can be oxidized or reduced twice in a cooperative manner; that is, the second electron transfer is easier than the first. This property is very important regarding the catalytic mechanism of enzymes that bifurcate electrons and the properties of bidirectional redox molecular catalysts that function in either direction of the reaction with no overpotential. Cyclic voltammetry is the most common technique for characterizing the thermodynamics and kinetics of electron transfer to or from these molecules. However, a gap in the literature is the absence of analytical predictions to help interpret the values of the voltammetric peak potentials when potential inversion occurs; the cyclic voltammograms are therefore often analyzed by simulating the data, with no discussion of the possibility of overfitting and often no estimation of the error on the determined parameters. Here we formulate the theory for the voltammetry of freely diffusing or surface-confined two-electron redox species in the experimentally relevant irreversible limit where the peak separation depends on the scan rate. We explain why the model is intrinsically underdetermined, and we illustrate this conclusion by analysis of the voltammetry of a nickel complex with redox-active iminosemiquinone ligands. Being able to characterize the thermodynamics of two-electron electron-transfer reactions will be crucial for designing more efficient catalysts.
Collapse
Affiliation(s)
- Cheriehan Hessin
- Institut de Chimie, Université de Strasbourg, UMR CNRS 7177, Strasbourg 67000, France
| | - Jules Schleinitz
- Laboratoire des Biomolécules, Département de Chimie, Sorbonne Université, École Normale Supérieure, PSL University, CNRS, Paris 75005, France
| | - Nolwenn Le Breton
- Institut de Chimie, Université de Strasbourg, UMR CNRS 7177, Strasbourg 67000, France
| | - Sylvie Choua
- Institut de Chimie, Université de Strasbourg, UMR CNRS 7177, Strasbourg 67000, France
| | - Laurence Grimaud
- Laboratoire des Biomolécules, Département de Chimie, Sorbonne Université, École Normale Supérieure, PSL University, CNRS, Paris 75005, France
| | - Vincent Fourmond
- Laboratoire de Bioénergétique et Ingénierie des Protéines, CNRS, Aix Marseille Université, Marseille 13009, France
| | - Marine Desage-El Murr
- Institut de Chimie, Université de Strasbourg, UMR CNRS 7177, Strasbourg 67000, France
| | - Christophe Léger
- Laboratoire de Bioénergétique et Ingénierie des Protéines, CNRS, Aix Marseille Université, Marseille 13009, France
| |
Collapse
|