1
|
Laha NP, Giehl RFH, Riemer E, Qiu D, Pullagurla NJ, Schneider R, Dhir YW, Yadav R, Mihiret YE, Gaugler P, Gaugler V, Mao H, Zheng N, von Wirén N, Saiardi A, Bhattacharjee S, Jessen HJ, Laha D, Schaaf G. INOSITOL (1,3,4) TRIPHOSPHATE 5/6 KINASE1-dependent inositol polyphosphates regulate auxin responses in Arabidopsis. PLANT PHYSIOLOGY 2022; 190:2722-2738. [PMID: 36124979 PMCID: PMC9706486 DOI: 10.1093/plphys/kiac425] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/13/2022] [Indexed: 06/15/2023]
Abstract
The combinatorial phosphorylation of myo-inositol results in the generation of different inositol phosphates (InsPs), of which phytic acid (InsP6) is the most abundant species in eukaryotes. InsP6 is also an important precursor of the higher phosphorylated inositol pyrophosphates (PP-InsPs), such as InsP7 and InsP8, which are characterized by a diphosphate moiety and are also ubiquitously found in eukaryotic cells. While PP-InsPs regulate various cellular processes in animals and yeast, their biosynthesis and functions in plants has remained largely elusive because plant genomes do not encode canonical InsP6 kinases. Recent work has shown that Arabidopsis (Arabidopsis thaliana) INOSITOL (1,3,4) TRIPHOSPHATE 5/6 KINASE1 (ITPK1) and ITPK2 display in vitro InsP6 kinase activity and that, in planta, ITPK1 stimulates 5-InsP7 and InsP8 synthesis and regulates phosphate starvation responses. Here we report a critical role of ITPK1 in auxin-related processes that is independent of the ITPK1-controlled regulation of phosphate starvation responses. Those processes include primary root elongation, root hair development, leaf venation, thermomorphogenic and gravitropic responses, and sensitivity to exogenously applied auxin. We found that the recombinant auxin receptor complex, consisting of the F-Box protein TRANSPORT INHIBITOR RESPONSE1 (TIR1), ARABIDOPSIS SKP1 HOMOLOG 1 (ASK1), and the transcriptional repressor INDOLE-3-ACETIC ACID INDUCIBLE 7 (IAA7), binds to anionic inositol polyphosphates with high affinity. We further identified a physical interaction between ITPK1 and TIR1, suggesting a localized production of 5-InsP7, or another ITPK1-dependent InsP/PP-InsP isomer, to activate the auxin receptor complex. Finally, we demonstrate that ITPK1 and ITPK2 function redundantly to control auxin responses, as deduced from the auxin-insensitive phenotypes of itpk1 itpk2 double mutant plants. Our findings expand the mechanistic understanding of auxin perception and suggest that distinct inositol polyphosphates generated near auxin receptors help to fine-tune auxin sensitivity in plants.
Collapse
Affiliation(s)
- Nargis Parvin Laha
- Department of Plant Nutrition, Institute of Crop Science and Resource Conservation, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn 53115, Germany
| | - Ricardo F H Giehl
- Department of Physiology & Cell Biology, Leibniz-Institute of Plant Genetics and Crop Plant Research, Gatersleben 06466, Germany
| | - Esther Riemer
- Department of Plant Nutrition, Institute of Crop Science and Resource Conservation, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn 53115, Germany
| | - Danye Qiu
- Department of Chemistry and Pharmacy & CIBSS–The Center for Biological Signalling Studies, University of Freiburg, Freiburg 79104, Germany
| | - Naga Jyothi Pullagurla
- Department of Biochemistry, Indian Institute of Science, Bengaluru 560012, Karnataka, India
| | - Robin Schneider
- Department of Plant Nutrition, Institute of Crop Science and Resource Conservation, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn 53115, Germany
| | - Yashika Walia Dhir
- Laboratory of Signal Transduction and Plant Resistance, Regional Centre for Biotechnology, NCR-Biotech Science Cluster, Faridabad 121001, Haryana, India
| | - Ranjana Yadav
- Department of Biochemistry, Indian Institute of Science, Bengaluru 560012, Karnataka, India
| | - Yeshambel Emewodih Mihiret
- Department of Plant Nutrition, Institute of Crop Science and Resource Conservation, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn 53115, Germany
| | - Philipp Gaugler
- Department of Plant Nutrition, Institute of Crop Science and Resource Conservation, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn 53115, Germany
| | - Verena Gaugler
- Department of Plant Nutrition, Institute of Crop Science and Resource Conservation, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn 53115, Germany
| | - Haibin Mao
- Department of Pharmacology, Howard Hughes Medical Institute, University of Washington, Seattle, Washington 98195, USA
| | - Ning Zheng
- Department of Pharmacology, Howard Hughes Medical Institute, University of Washington, Seattle, Washington 98195, USA
| | - Nicolaus von Wirén
- Department of Physiology & Cell Biology, Leibniz-Institute of Plant Genetics and Crop Plant Research, Gatersleben 06466, Germany
| | - Adolfo Saiardi
- Medical Research Council Laboratory for Molecular Cell Biology (MRC-LMCB), University College London, London WC1E 6BT, UK
| | - Saikat Bhattacharjee
- Laboratory of Signal Transduction and Plant Resistance, Regional Centre for Biotechnology, NCR-Biotech Science Cluster, Faridabad 121001, Haryana, India
| | - Henning J Jessen
- Department of Chemistry and Pharmacy & CIBSS–The Center for Biological Signalling Studies, University of Freiburg, Freiburg 79104, Germany
| | - Debabrata Laha
- Department of Biochemistry, Indian Institute of Science, Bengaluru 560012, Karnataka, India
| | - Gabriel Schaaf
- Department of Plant Nutrition, Institute of Crop Science and Resource Conservation, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn 53115, Germany
| |
Collapse
|
2
|
Gaugler P, Schneider R, Liu G, Qiu D, Weber J, Schmid J, Jork N, Häner M, Ritter K, Fernández-Rebollo N, Giehl RFH, Trung MN, Yadav R, Fiedler D, Gaugler V, Jessen HJ, Schaaf G, Laha D. Arabidopsis PFA-DSP-Type Phosphohydrolases Target Specific Inositol Pyrophosphate Messengers. Biochemistry 2022; 61:1213-1227. [PMID: 35640071 DOI: 10.1021/acs.biochem.2c00145] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Inositol pyrophosphates are signaling molecules containing at least one phosphoanhydride bond that regulate a wide range of cellular processes in eukaryotes. With a cyclic array of phosphate esters and diphosphate groups around myo-inositol, these molecular messengers possess the highest charge density found in nature. Recent work deciphering inositol pyrophosphate biosynthesis in Arabidopsis revealed important functions of these messengers in nutrient sensing, hormone signaling, and plant immunity. However, despite the rapid hydrolysis of these molecules in plant extracts, very little is known about the molecular identity of the phosphohydrolases that convert these messengers back to their inositol polyphosphate precursors. Here, we investigate whether Arabidopsis Plant and Fungi Atypical Dual Specificity Phosphatases (PFA-DSP1-5) catalyze inositol pyrophosphate phosphohydrolase activity. We find that recombinant proteins of all five Arabidopsis PFA-DSP homologues display phosphohydrolase activity with a high specificity for the 5-β-phosphate of inositol pyrophosphates and only minor activity against the β-phosphates of 4-InsP7 and 6-InsP7. We further show that heterologous expression of Arabidopsis PFA-DSP1-5 rescues wortmannin sensitivity and deranged inositol pyrophosphate homeostasis caused by the deficiency of the PFA-DSP-type inositol pyrophosphate phosphohydrolase Siw14 in yeast. Heterologous expression in Nicotiana benthamiana leaves provided evidence that Arabidopsis PFA-DSP1 also displays 5-β-phosphate-specific inositol pyrophosphate phosphohydrolase activity in planta. Our findings lay the biochemical basis and provide the genetic tools to uncover the roles of inositol pyrophosphates in plant physiology and plant development.
Collapse
Affiliation(s)
- Philipp Gaugler
- Department of Plant Nutrition, Institute of Crop Science and Resource Conservation, Rheinische Friedrich-Wilhelms-Universität Bonn, 53115 Bonn, Germany
| | - Robin Schneider
- Department of Plant Nutrition, Institute of Crop Science and Resource Conservation, Rheinische Friedrich-Wilhelms-Universität Bonn, 53115 Bonn, Germany
| | - Guizhen Liu
- Department of Chemistry and Pharmacy and CIBSS-Centre for Integrative Biological Signalling Studies, Albert-Ludwigs University Freiburg, 79104 Freiburg, Germany
| | - Danye Qiu
- Department of Chemistry and Pharmacy and CIBSS-Centre for Integrative Biological Signalling Studies, Albert-Ludwigs University Freiburg, 79104 Freiburg, Germany
| | - Jonathan Weber
- Department of Plant Nutrition, Institute of Crop Science and Resource Conservation, Rheinische Friedrich-Wilhelms-Universität Bonn, 53115 Bonn, Germany
| | - Jochen Schmid
- Center for Plant Molecular Biology, Department of Plant Physiology, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Nikolaus Jork
- Department of Chemistry and Pharmacy and CIBSS-Centre for Integrative Biological Signalling Studies, Albert-Ludwigs University Freiburg, 79104 Freiburg, Germany.,Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, 79104 Freiburg, Germany
| | - Markus Häner
- Department of Chemistry and Pharmacy and CIBSS-Centre for Integrative Biological Signalling Studies, Albert-Ludwigs University Freiburg, 79104 Freiburg, Germany
| | - Kevin Ritter
- Department of Chemistry and Pharmacy and CIBSS-Centre for Integrative Biological Signalling Studies, Albert-Ludwigs University Freiburg, 79104 Freiburg, Germany
| | - Nicolás Fernández-Rebollo
- Center for Plant Molecular Biology, Department of Plant Physiology, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Ricardo F H Giehl
- Department of Physiology & Cell Biology, Leibniz-Institute of Plant Genetics and Crop Plant Research, 06466 Gatersleben, Germany
| | - Minh Nguyen Trung
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, 13125 Berlin, Germany.,Department of Chemistry, Humboldt Universität zu Berlin, 12489 Berlin, Germany
| | - Ranjana Yadav
- Department of Biochemistry, Indian Institute of Science (IISc), Bengaluru 560012, India
| | - Dorothea Fiedler
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, 13125 Berlin, Germany.,Department of Chemistry, Humboldt Universität zu Berlin, 12489 Berlin, Germany
| | - Verena Gaugler
- Department of Plant Nutrition, Institute of Crop Science and Resource Conservation, Rheinische Friedrich-Wilhelms-Universität Bonn, 53115 Bonn, Germany
| | - Henning J Jessen
- Department of Chemistry and Pharmacy and CIBSS-Centre for Integrative Biological Signalling Studies, Albert-Ludwigs University Freiburg, 79104 Freiburg, Germany
| | - Gabriel Schaaf
- Department of Plant Nutrition, Institute of Crop Science and Resource Conservation, Rheinische Friedrich-Wilhelms-Universität Bonn, 53115 Bonn, Germany
| | - Debabrata Laha
- Department of Biochemistry, Indian Institute of Science (IISc), Bengaluru 560012, India
| |
Collapse
|
3
|
Riemer E, Pullagurla NJ, Yadav R, Rana P, Jessen HJ, Kamleitner M, Schaaf G, Laha D. Regulation of plant biotic interactions and abiotic stress responses by inositol polyphosphates. FRONTIERS IN PLANT SCIENCE 2022; 13:944515. [PMID: 36035672 PMCID: PMC9403785 DOI: 10.3389/fpls.2022.944515] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 07/20/2022] [Indexed: 05/14/2023]
Abstract
Inositol pyrophosphates (PP-InsPs), derivatives of inositol hexakisphosphate (phytic acid, InsP6) or lower inositol polyphosphates, are energy-rich signaling molecules that have critical regulatory functions in eukaryotes. In plants, the biosynthesis and the cellular targets of these messengers are not fully understood. This is because, in part, plants do not possess canonical InsP6 kinases and are able to synthesize PP-InsP isomers that appear to be absent in yeast or mammalian cells. This review will shed light on recent discoveries in the biosynthesis of these enigmatic messengers and on how they regulate important physiological processes in response to abiotic and biotic stresses in plants.
Collapse
Affiliation(s)
- Esther Riemer
- Departmentof Plant Nutrition, Institute of Crop Science and Resource Conservation, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
- *Correspondence: Esther Riemer,
| | | | - Ranjana Yadav
- Department of Biochemistry, Indian Institute of Science, Bengaluru, India
| | - Priyanshi Rana
- Department of Biochemistry, Indian Institute of Science, Bengaluru, India
| | - Henning J. Jessen
- Department of Chemistry and Pharmacy & CIBSS – The Center of Biological Signaling Studies, Albert-Ludwigs University Freiburg, Freiburg, Germany
| | - Marília Kamleitner
- Departmentof Plant Nutrition, Institute of Crop Science and Resource Conservation, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Gabriel Schaaf
- Departmentof Plant Nutrition, Institute of Crop Science and Resource Conservation, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Debabrata Laha
- Department of Biochemistry, Indian Institute of Science, Bengaluru, India
- Debabrata Laha,
| |
Collapse
|