1
|
Rivera-Flores I, Wang E, Murphy K. Mycobacterium smegmatis NucS-promoted DNA mismatch repair involves limited resection by a 5'-3' exonuclease and is independent of homologous recombination and NHEJ. Nucleic Acids Res 2024; 52:12308-12323. [PMID: 39417425 PMCID: PMC11551767 DOI: 10.1093/nar/gkae895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 09/07/2024] [Accepted: 09/27/2024] [Indexed: 10/19/2024] Open
Abstract
The MutSL mismatch repair (MMR) systems in bacteria and eukaryotes correct mismatches made at the replication fork to maintain genome stability. A novel MMR system is represented by the EndoMS/NucS endonuclease from Actinobacterium Corynebacterium glutamicum, which recognizes mismatched substrates in vitro and creates dsDNA breaks at the mismatch. In this report, a genetic analysis shows that an M. smegmatis ΔnucS strain could be complemented by expression of wild type NucS protein, but not by one deleted of its last five amino acids, a region predicted to be critical for binding to the β-clamp at the replication fork. Oligo-recombineering was then leveraged to deliver defined mismatches to a defective hygromycin resistance gene on the M. smegmatis chromosome. We find that NucS recognizes and repairs G-G, G-T, and T-T mismatches in vivo, consistent with the recognition of these same mismatches in C. glutamicum in vitro, as well as mutation accumulation studies done in M. smegmatis. Finally, an assay that employs an oligo that promotes the generation of two mismatches in close proximity on the chromosome shows that a NucS-promoted cut is processed by a 5'-3' exonuclease (or 5'-Flap endonuclease) and that NucS-promoted MMR is independent of both homologous recombination and non-homologous end-joining.
Collapse
Affiliation(s)
- Iris V Rivera-Flores
- Department of Microbiology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Emily X Wang
- Department of Microbiology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Kenan C Murphy
- Department of Microbiology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| |
Collapse
|
2
|
Islam T, Josephs EA. Genome editing outcomes reveal mycobacterial NucS participates in a short-patch repair of DNA mismatches. Nucleic Acids Res 2024; 52:12295-12307. [PMID: 38747340 PMCID: PMC11551744 DOI: 10.1093/nar/gkae402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/24/2024] [Accepted: 05/01/2024] [Indexed: 05/28/2024] Open
Abstract
In the canonical DNA mismatch repair (MMR) mechanism in bacteria, if a nucleotide is incorrectly mis-paired with the template strand during replication, the resulting repair of this mis-pair can result in the degradation and re-synthesis of hundreds or thousands of nucleotides on the newly-replicated strand (long-patch repair). While mycobacteria, which include important pathogens such as Mycobacterium tuberculosis, lack the otherwise highly-conserved enzymes required for the canonical MMR reaction, it was found that disruption of a mycobacterial mismatch-sensitive endonuclease NucS results in a hyper-mutative phenotype, leading to the idea that NucS might be involved in a cryptic, independently-evolved DNA MMR mechanism, perhaps mediated by homologous recombination (HR) with a sister chromatid. Using oligonucleotide recombination, which allows us to introduce mismatches specifically into the genomes of a model for M. tuberculosis, Mycobacterium smegmatis, we find that NucS participates in a direct repair of DNA mismatches where the patch of excised nucleotides is largely confined to within ∼5-6 bp of the mis-paired nucleotides, which is inconsistent with mechanistic models of canonical mycobacterial HR or other double-strand break (DSB) repair reactions. The results presented provide evidence of a novel NucS-associated mycobacterial MMR mechanism occurring in vivo to regulate genetic mutations in mycobacteria.
Collapse
Affiliation(s)
- Tanjina Islam
- Department of Nanoscience, University of North Carolina at Greensboro, Greensboro, NC 27401, USA
| | - Eric A Josephs
- Department of Nanoscience, University of North Carolina at Greensboro, Greensboro, NC 27401, USA
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27401, USA
| |
Collapse
|
3
|
Gwin CM, Gupta KR, Lu Y, Shao L, Rego EH. Spatial segregation and aging of metabolic processes underlie phenotypic heterogeneity in mycobacteria. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.01.569614. [PMID: 38076906 PMCID: PMC10705497 DOI: 10.1101/2023.12.01.569614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Individual cells within clonal populations of mycobacteria vary in size, growth rate, and antibiotic susceptibility. Heterogeneity is, in part, determined by LamA, a protein found exclusively in mycobacteria. LamA localizes to sites of new cell wall synthesis where it recruits proteins important for polar growth and establishing asymmetry. Here, we report that in addition to this function, LamA interacts with complexes involved in oxidative phosphorylation (OXPHOS) at a subcellular location distinct from cell wall synthesis. Importantly, heterogeneity depends on a unique extension of the mycobacterial ATP synthase, and LamA mediates the coupling between ATP production and cell growth in single cells. Strikingly, as single cells age, concentrations of proteins important for oxidative phosphorylation become less abundant, and older cells rely less on oxidative phosphorylation for growth. Together, our data reveal that central metabolism is spatially organized within a single mycobacterium and varies within a genetically identical population of mycobacteria. Designing therapeutic regimens to account for this heterogeneity may help to treat mycobacterial infections faster and more completely.
Collapse
Affiliation(s)
- Celena M. Gwin
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06519
| | - Kuldeepkumar R. Gupta
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06519
| | - Yao Lu
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06519
| | - Lin Shao
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06519
| | - E. Hesper Rego
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06519
| |
Collapse
|
4
|
Islam T, Josephs EA. Genome Editing Outcomes Reveal Mycobacterial NucS Participates in a Short-Patch Repair of DNA Mismatches. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.23.563644. [PMID: 37961639 PMCID: PMC10634747 DOI: 10.1101/2023.10.23.563644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
In the canonical DNA mismatch repair (MMR) mechanism in bacteria, if during replication a nucleotide is incorrectly mis-paired with the template strand, the resulting repair of this mis-pair can result in the degradation and re-synthesis of hundreds or thousands of nucleotides on the newly-replicated strand (long-patch repair). While mycobacteria, which include important pathogens such as Mycobacterium tuberculosis, lack the otherwise highly-conserved enzymes required for the canonical MMR reaction, it was found that disruption of a mycobacterial mismatch-sensitive endonuclease NucS results in a hyper-mutative phenotype, which has led to the idea that NucS might be involved in a cryptic, independently-evolved DNA MMR mechanism. It has been proposed that nuclease activity at a mismatch might result in correction by homologous recombination (HR) with a sister chromatid. Using oligonucleotide recombination, which allows us to introduce mismatches during replication specifically into the genomes of a model for M. tuberculosis, Mycobacterium smegmatis, we find that NucS participates in a direct repair of DNA mismatches where the patch of excised nucleotides is largely confined to within ~5 - 6 bp of the mis-paired nucleotides, which is inconsistent with mechanistic models of canonical mycobacterial HR or other double-strand break (DSB) repair reactions. The results presented provide evidence of a novel NucS-associated mycobacterial MMR mechanism occurring in vivo to regulate genetic mutations in mycobacteria.
Collapse
Affiliation(s)
- Tanjina Islam
- Department of Nanoscience, University of North Carolina at Greensboro, Greensboro, NC, 27401, USA
| | - Eric A. Josephs
- Department of Nanoscience, University of North Carolina at Greensboro, Greensboro, NC, 27401, USA
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC, 27401, USA
| |
Collapse
|
5
|
Vargas R, Luna MJ, Freschi L, Marin M, Froom R, Murphy KC, Campbell EA, Ioerger TR, Sassetti CM, Farhat MR. Phase variation as a major mechanism of adaptation in Mycobacterium tuberculosis complex. Proc Natl Acad Sci U S A 2023; 120:e2301394120. [PMID: 37399390 PMCID: PMC10334774 DOI: 10.1073/pnas.2301394120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 05/03/2023] [Indexed: 07/05/2023] Open
Abstract
Phase variation induced by insertions and deletions (INDELs) in genomic homopolymeric tracts (HT) can silence and regulate genes in pathogenic bacteria, but this process is not characterized in MTBC (Mycobacterium tuberculosis complex) adaptation. We leverage 31,428 diverse clinical isolates to identify genomic regions including phase-variants under positive selection. Of 87,651 INDEL events that emerge repeatedly across the phylogeny, 12.4% are phase-variants within HTs (0.02% of the genome by length). We estimated the in-vitro frameshift rate in a neutral HT at 100× the neutral substitution rate at [Formula: see text] frameshifts/HT/year. Using neutral evolution simulations, we identified 4,098 substitutions and 45 phase-variants to be putatively adaptive to MTBC (P < 0.002). We experimentally confirm that a putatively adaptive phase-variant alters the expression of espA, a critical mediator of ESX-1-dependent virulence. Our evidence supports the hypothesis that phase variation in the ESX-1 system of MTBC can act as a toggle between antigenicity and survival in the host.
Collapse
Affiliation(s)
- Roger Vargas
- Center for Computational Biomedicine, Harvard Medical School, Boston, MA02115
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA02115
| | - Michael J. Luna
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA01655
| | - Luca Freschi
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA02115
| | - Maximillian Marin
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA02115
| | - Ruby Froom
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY10065
- Laboratory of Host-Pathogen Biology, The Rockefeller University, New York, NY10065
| | - Kenan C. Murphy
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA01655
| | | | - Thomas R. Ioerger
- Department of Computer Science and Engineering, Texas A&M University, College Station, TX77843
| | - Christopher M. Sassetti
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA01655
| | - Maha Reda Farhat
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA02115
- Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA02114
| |
Collapse
|
6
|
Armianinova DK, Karpov DS, Kotliarova MS, Goncharenko AV. Genetic Engineering in Mycobacteria. Mol Biol 2022. [DOI: 10.1134/s0026893322060036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Abstract
Genetic tools for targeted modification of the mycobacterial genome contribute to the understanding of the physiology and virulence mechanisms of mycobacteria. Human and animal pathogens, such as the Mycobacterium tuberculosis complex, which causes tuberculosis, and M. leprae, which causes leprosy, are of particular importance. Genetic research opens up novel opportunities to identify and validate new targets for antibacterial drugs and to develop improved vaccines. Although mycobacteria are difficult to work with due to their slow growth rate and a limited possibility to transfer genetic information, significant progress has been made in developing genetic engineering methods for mycobacteria. The review considers the main approaches to changing the mycobacterial genome in a targeted manner, including homologous and site-specific recombination and use of the CRISPR/Cas system.
Collapse
|