1
|
Bufi S, Santoro R. Three-Dimensional iPSC-Based In Vitro Cardiac Models for Biomedical and Pharmaceutical Research Applications. Int J Mol Sci 2024; 25:10690. [PMID: 39409018 PMCID: PMC11477044 DOI: 10.3390/ijms251910690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/20/2024] Open
Abstract
Cardiovascular diseases are a major cause of death worldwide. Advanced in vitro models can be the key stone for a better understanding of the mechanisms at the basis of the different pathologies, supporting the development of novel therapeutic protocols. In particular, the implementation of induced pluripotent stem cell (iPSC) technology allows for the generation of a patient-specific pluripotent cell line that is able to differentiate in several organ-specific cell subsets while retaining the patient genetic background, thus putting the basis for personalized in vitro modeling toward personalized medicine. The design of iPSC-based models able to recapitulate the complexity of the cardiac environment is a critical goal. Here, we review some of the published efforts to exploit three dimensional (3D) iPSC-based methods to recapitulate the relevant cardiomyopathies, including genetically and non-genetically determined cardiomyopathies and cardiotoxicity studies. Finally, we discuss the actual method limitations and the future perspectives in the field.
Collapse
Affiliation(s)
- Simona Bufi
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino-IRCCS, 20138 Milan, Italy
| | - Rosaria Santoro
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino-IRCCS, 20138 Milan, Italy
- Department of Electronics, Information and Biomedical Engineering, Politecnico di Milano, 20133 Milan, Italy
| |
Collapse
|
2
|
Satsuka A, Ribeiro AJS, Kawagishi H, Yanagida S, Hirata N, Yoshinaga T, Kurokawa J, Sugiyama A, Strauss DG, Kanda Y. Contractility assessment using aligned human iPSC-derived cardiomyocytes. J Pharmacol Toxicol Methods 2024; 128:107530. [PMID: 38917571 DOI: 10.1016/j.vascn.2024.107530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/17/2024] [Accepted: 06/05/2024] [Indexed: 06/27/2024]
Abstract
INTRODUCTION Cardiac safety assessment, such as lethal arrhythmias and contractility dysfunction, is critical during drug development. Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have been shown to be useful in predicting drug-induced proarrhythmic risk through international validation studies. Although cardiac contractility is another key function, fit-for-purpose hiPSC-CMs in evaluating drug-induced contractile dysfunction remain poorly understood. In this study, we investigated whether alignment of hiPSC-CMs on nanopatterned culture plates can assess drug-induced contractile changes more efficiently than non-aligned monolayer culture. METHODS Aligned hiPSC-CMs were obtained by culturing on 96-well culture plates with a ridge-groove-ridge nanopattern on the bottom surface, while non-aligned hiPSC-CMs were cultured on regular 96-well plates. Next-generation sequencing and qPCR experiments were performed for gene expression analysis. Contractility of the hiPSC-CMs was assessed using an imaging-based motion analysis system. RESULTS When cultured on nanopatterned plates, hiPSC-CMs exhibited an aligned morphology and enhanced expression of genes encoding proteins that regulate contractility, including myosin heavy chain, calcium channel, and ryanodine receptor. Compared to cultures on regular plates, the aligned hiPSC-CMs also showed both enhanced contraction and relaxation velocity. In addition, the aligned hiPSC-CMs showed a more physiological response to positive and negative inotropic agents, such as isoproterenol and verapamil. DISCUSSION Taken together, the aligned hiPSC-CMs exhibited enhanced structural and functional properties, leading to an improved capacity for contractility assessment compared to the non-aligned cells. These findings suggest that the aligned hiPSC-CMs can be used to evaluate drug-induced cardiac contractile changes.
Collapse
Affiliation(s)
- Ayano Satsuka
- Division of Pharmacology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-9501, Japan
| | - Alexandre J S Ribeiro
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, Silver Spring, MD 20903, USA
| | - Hiroyuki Kawagishi
- Division of Pharmacology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-9501, Japan
| | - Shota Yanagida
- Division of Pharmacology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-9501, Japan
| | - Naoya Hirata
- Division of Pharmacology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-9501, Japan
| | - Takashi Yoshinaga
- Advanced Biosignal Safety Assessment, Eisai Co., Ltd, 5-1-3 Tokodai, Tsukuba, Ibaraki 300-2635, Japan
| | - Junko Kurokawa
- Department of Bio-Informational Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka-shi, Shizuoka 422-8526, Japan
| | - Atsushi Sugiyama
- Department of Pharmacology, Faculty of Medicine, Toho University, 5-21-16 Omori-nishi, Ota-ku, Tokyo 143-8540, Japan
| | - David G Strauss
- Division of Applied Regulatory Science, Office of Translational Science, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20903, USA
| | - Yasunari Kanda
- Division of Pharmacology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-9501, Japan.
| |
Collapse
|
3
|
Bernava G, Iop L. Advances in the design, generation, and application of tissue-engineered myocardial equivalents. Front Bioeng Biotechnol 2023; 11:1247572. [PMID: 37811368 PMCID: PMC10559975 DOI: 10.3389/fbioe.2023.1247572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/29/2023] [Indexed: 10/10/2023] Open
Abstract
Due to the limited regenerative ability of cardiomyocytes, the disabling irreversible condition of myocardial failure can only be treated with conservative and temporary therapeutic approaches, not able to repair the damage directly, or with organ transplantation. Among the regenerative strategies, intramyocardial cell injection or intravascular cell infusion should attenuate damage to the myocardium and reduce the risk of heart failure. However, these cell delivery-based therapies suffer from significant drawbacks and have a low success rate. Indeed, cardiac tissue engineering efforts are directed to repair, replace, and regenerate native myocardial tissue function. In a regenerative strategy, biomaterials and biomimetic stimuli play a key role in promoting cell adhesion, proliferation, differentiation, and neo-tissue formation. Thus, appropriate biochemical and biophysical cues should be combined with scaffolds emulating extracellular matrix in order to support cell growth and prompt favorable cardiac microenvironment and tissue regeneration. In this review, we provide an overview of recent developments that occurred in the biomimetic design and fabrication of cardiac scaffolds and patches. Furthermore, we sift in vitro and in situ strategies in several preclinical and clinical applications. Finally, we evaluate the possible use of bioengineered cardiac tissue equivalents as in vitro models for disease studies and drug tests.
Collapse
Affiliation(s)
| | - Laura Iop
- Department of Cardiac Thoracic Vascular Sciences and Public Health, Padua Medical School, University of Padua, Padua, Italy
| |
Collapse
|
4
|
Satsuka A, Hayashi S, Yanagida S, Ono A, Kanda Y. Contractility assessment of human iPSC-derived cardiomyocytes by using a motion vector system and measuring cell impedance. J Pharmacol Toxicol Methods 2022; 118:107227. [PMID: 36243255 DOI: 10.1016/j.vascn.2022.107227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 08/16/2022] [Accepted: 10/10/2022] [Indexed: 12/31/2022]
Abstract
Predicting drug-induced cardiotoxicity during the non-clinical stage is important to avoid severe consequences in the clinical trials of new drugs. Human iPSC-derived cardiomyocytes (hiPSC-CMs) hold great promise for cardiac safety assessments in drug development. To date, multi-electrode array system (MEA) has been a widely used as a tool for the assessment of proarrhythmic risk with hiPSC-CMs. Recently, new methodologies have been proposed to assess in vitro contractility, such as the force and velocity of cell contraction, using hiPSC-CMs. Herein, we focused on an imaging-based motion vector system (MV) and an electric cell-substrate impedance sensing system (IMP). We compared the output signals of hiPSC-CMs from MV and IMP in detail and observed a clear correlation between the parameters. In addition, we assessed the effects of isoproterenol and verapamil on hiPSC-CM contraction and identified a correlation in the contractile change of parameters obtained with MV and IMP. These results suggest that both assay systems could be used to monitor hiPSC-CM contraction dynamics.
Collapse
Affiliation(s)
- Ayano Satsuka
- Division of Pharmacology, National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki-ku, Kanagawa 210-9501, Japan
| | - Sayo Hayashi
- Division of Pharmacology, National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki-ku, Kanagawa 210-9501, Japan
| | - Shota Yanagida
- Division of Pharmacology, National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki-ku, Kanagawa 210-9501, Japan; Division of Pharmaceutical Sciences, Graduated School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1, Tsushima-naka, kita-ku, Okayama, Okayama 700-8530, Japan
| | - Atsushi Ono
- Division of Pharmaceutical Sciences, Graduated School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1, Tsushima-naka, kita-ku, Okayama, Okayama 700-8530, Japan
| | - Yasunari Kanda
- Division of Pharmacology, National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki-ku, Kanagawa 210-9501, Japan; Division of Pharmaceutical Sciences, Graduated School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1, Tsushima-naka, kita-ku, Okayama, Okayama 700-8530, Japan.
| |
Collapse
|
5
|
Yanagida S, Satsuka A, Hayashi S, Ono A, Kanda Y. Proarrhythmia Risk Assessment Using Electro-Mechanical Window in Human iPS Cell-Derived Cardiomyocytes. Biol Pharm Bull 2022; 45:940-947. [PMID: 35786601 DOI: 10.1248/bpb.b22-00268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Evaluation of drug-induced cardiotoxicity is still challenging to avoid adverse effects, such as torsade de pointes (TdP), in non-clinical and clinical studies. Numerous studies have suggested that human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are a useful platform for detecting drug-induced TdP risks. Comprehensive in vitro Proarrhythmia Assay (CiPA) validation study suggested that hiPSC-CMs can assess clinical TdP risk more accurately than the human ether-a-go-go-related assay and QT interval prolongation. However, there were still some outliers, such as bepridil, mexiletine, and ranolazine, among the CiPA 28 compounds in the CiPA international multi-site study using hiPSC-CMs. In this study, we assessed the effects of the positive compound dofetilide, the negative compound aspirin, and several CiPA compounds (bepridil, mexiletine, and ranolazine) on the electromechanical window (E-M window), which were evaluated using multi-electrode array assay and motion analysis, in hiPSC-CMs. Similar to previous in vivo studies, dofetilide, which has a high TdP risk, decreased the E-M window in hiPSC-CMs, whereas aspirin, which has a low TdP risk, had little effect. Bepridil, classified in the high TdP-risk group in CiPA, decreased the E-M window in hiPSC-CMs, whereas ranolazine and mexiletine, which are classified in the low TdP-risk group in CiPA, slightly decreased or had little effect on the E-M window of hiPSC-CMs. Thus, the E-M window in hiPSC-CMs can be used to classify drugs into high and low TdP risk.
Collapse
Affiliation(s)
- Shota Yanagida
- Division of Pharmacology, National Institute of Health Sciences.,Division of Pharmaceutical Sciences, Graduated School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
| | - Ayano Satsuka
- Division of Pharmacology, National Institute of Health Sciences
| | - Sayo Hayashi
- Division of Pharmacology, National Institute of Health Sciences
| | - Atsushi Ono
- Division of Pharmaceutical Sciences, Graduated School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
| | - Yasunari Kanda
- Division of Pharmacology, National Institute of Health Sciences.,Division of Pharmaceutical Sciences, Graduated School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
| |
Collapse
|