1
|
Chen H, Luo Y, Li X, Zhang Y, Zheng S, Chen J, Sun Y, Xie Y. The differences of characteristics and allergenicity between natural and recombinant tropomyosin of Macrobrachium nipponense. Food Chem 2024; 460:140610. [PMID: 39068796 DOI: 10.1016/j.foodchem.2024.140610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/06/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
Tropomyosin (TM) is the main allergen of Macrobrachium nipponense. Recombinant allergens have great prospects in the detection, diagnosis, and treatment of food allergens. The purpose of this study was to compare the differences in structure and allergenicity between natural TM and recombinant TM. Recombinant TM of M. nipponense with a molecular weight of 38 kDa was successfully expressed in the Escherichia coli system. The amino acid sequence as well as secondary structure between natural and recombinant TM were similar, which were verified by mass and CD spectrometry, respectively. Studies showed that both natural TM and recombinant TM had strong allergenicity, and recombinant TM was more allergenic, which could be used as a substitute for natural TM in the diagnosis and treatment of shrimp allergy. This study provided stable and reliable allergen components for the detection of crustacean allergens and the diagnosis and treatment of food allergies caused by crustacean allergens.
Collapse
Affiliation(s)
- Hongbing Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing Dong Road, Nanchang, Jiangxi, 330047, China; Sino German Joint Research Institute, Nanchang University, 235 Nanjing Dong Road, Nanchang, Jiangxi, 330047, China
| | - Yeqing Luo
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing Dong Road, Nanchang, Jiangxi, 330047, China; Sino German Joint Research Institute, Nanchang University, 235 Nanjing Dong Road, Nanchang, Jiangxi, 330047, China; College of Food Science and Technology, Nanchang University, 999 Xuefu Road, Nanchang, Jiangxi, 330009, China
| | - Xin Li
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing Dong Road, Nanchang, Jiangxi, 330047, China; College of Food Science and Technology, Nanchang University, 999 Xuefu Road, Nanchang, Jiangxi, 330009, China
| | - Yingxue Zhang
- Wayne State University School of Medicine, 540 E. Canfield, Detroit, MI, 48201, USA
| | - Shuangyan Zheng
- Sino German Joint Research Institute, Nanchang University, 235 Nanjing Dong Road, Nanchang, Jiangxi, 330047, China
| | - Jiao Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing Dong Road, Nanchang, Jiangxi, 330047, China; Sino German Joint Research Institute, Nanchang University, 235 Nanjing Dong Road, Nanchang, Jiangxi, 330047, China; College of Food Science and Technology, Nanchang University, 999 Xuefu Road, Nanchang, Jiangxi, 330009, China
| | - Yaobin Sun
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing Dong Road, Nanchang, Jiangxi, 330047, China; Sino German Joint Research Institute, Nanchang University, 235 Nanjing Dong Road, Nanchang, Jiangxi, 330047, China; College of Food Science and Technology, Nanchang University, 999 Xuefu Road, Nanchang, Jiangxi, 330009, China
| | - Yanhai Xie
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing Dong Road, Nanchang, Jiangxi, 330047, China; Sino German Joint Research Institute, Nanchang University, 235 Nanjing Dong Road, Nanchang, Jiangxi, 330047, China.
| |
Collapse
|
2
|
Zhang ZQ, Li JY, Bao YW, Song YQ, Song DX, Wang C, Zhu XH. Immunocytes do not mediate food intake and the causal relationship with allergic rhinitis: a comprehensive Mendelian randomization. Front Nutr 2024; 11:1432283. [PMID: 39399526 PMCID: PMC11466801 DOI: 10.3389/fnut.2024.1432283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 09/09/2024] [Indexed: 10/15/2024] Open
Abstract
Background Observational studies indicate a correlation between food intake and allergic rhinitis. The potential interplay between the immune system and allergic rhinitis might contribute causally to both food intake and allergic rhinitis, providing promising therapeutic avenues. However, elucidating the causal relationship and immune-mediated mechanisms between food intake and allergic rhinitis remains a pending task. Methods We utilized a two-sample Mendelian randomization (MR) methodology to explore the causal relationship between food intake and allergic rhinitis. Furthermore, we investigated the potential causal relationship of immune cell signals with allergic rhinitis, as well as the potential causal relationship between food intake and immune cell signals. Moreover, employing both two-step Mendelian randomization and multivariable Mendelian randomization, we delved into the mediating role of immune cell signals in the causal relationship between food intake and allergic rhinitis. Leveraging publicly accessible genetic datasets, our analysis encompassed 903 traits, comprising 171 food intake features, 731 immune cell features, and one trait related to allergic rhinitis. Result We found causal relationships between seven types of food intake and allergic rhinitis, as well as between 30 immune cell phenotypes and allergic rhinitis. Furthermore, our two-step Mendelian randomization analysis and multivariable Mendelian randomization analysis indicate that immune cells do not mediate the causal relationship between food intake and allergic rhinitis. Conclusion To the best of our knowledge, we are the first to incorporate a large-scale dataset integrating immune cell features, food intake features, and allergic rhinitis into Mendelian randomization analysis. Our research findings indicate that there are causal relationships between six types of food intake and allergic rhinitis, as well as between 30 immune cell phenotypes and allergic rhinitis. Additionally, immune cells do not mediate these relationships.
Collapse
Affiliation(s)
- Zhi-qiang Zhang
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Jing-yang Li
- Department of Clinical Medicine, The First School of Clinical Medicine, Nanchang University, Nanchang, China
| | - You-wei Bao
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yu-Qi Song
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dong-xu Song
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cheng Wang
- Department of Critical Care Medicine, Medical Center of Anesthesiology and Pain, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Xin-hua Zhu
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
3
|
Mueller S. Existing and emerging mRNA vaccines and their environmental impact: a transdisciplinary assessment. ENVIRONMENTAL SCIENCES EUROPE 2024; 36:144. [DOI: 10.1186/s12302-024-00966-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/30/2024] [Indexed: 01/05/2025]
|
4
|
Ali A, Wu L, Ali SS. Gut microbiota and acute kidney injury: immunological crosstalk link. Int Urol Nephrol 2024; 56:1345-1358. [PMID: 37749436 DOI: 10.1007/s11255-023-03760-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 08/14/2023] [Indexed: 09/27/2023]
Abstract
The gut microbiota, often called the "forgotten organ," plays a crucial role in bidirectional communication with the host for optimal physiological function. This communication helps regulate the host's immunity and metabolism positively and negatively. Many factors influence microbiota homeostasis and subsequently lead to an immune system imbalance. The correlation between an unbalanced immune system and acute diseases such as acute kidney injury is not fully understood, and the role of gut microbiota in disease pathogenesis is still yet uncovered. This review summarizes our understanding of gut microbiota, focusing on the interactions between the host's immune system and the microbiome and their impact on acute kidney injury.
Collapse
Affiliation(s)
- Asmaa Ali
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China.
- Department of Pulmonary Medicine, Abbassia Chest Hospital, MOH, Cairo, Egypt.
- Department of Respiratory Allergy, A Al-Rashed Allergy Center, Ministry of Health, Kuwait, Kuwait.
| | - Liang Wu
- Yizheng Hospital, Nanjing Drum Tower Hospital Group, Yizheng, 210008, China.
| | - Sameh Samir Ali
- School of the Environment and Safety Engineering, Biofuels Institute, Jiangsu University, Zhenjiang, 212013, China
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| |
Collapse
|
5
|
Minagar A, Jabbour R. The Human Gut Microbiota: A Dynamic Biologic Factory. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2024. [PMID: 38337077 DOI: 10.1007/10_2023_243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
The human body constitutes a living environment for trillions of microorganisms, which establish the microbiome and, the largest population among them, reside within the gastrointestinal tract, establishing the gut microbiota. The term "gut microbiota" refers to a set of many microorganisms [mainly bacteria], which live symbiotically within the human host. The term "microbiome" means the collective genomic content of these microorganisms. The number of bacterial cells within the gut microbiota exceeds the host's cells; collectively and their genes quantitatively surpass the host's genes. Immense scientific research into the nature and function of the gut microbiota is unraveling its roles in certain human health activities such as metabolic, physiology, and immune activities and also in pathologic states and diseases. Interestingly, the microbiota, a dynamic ecosystem, inhabits a particular environment such as the human mouth or gut. Human microbiota can evolve and even adapt to the host's unique features such as eating habits, genetic makeup, underlying diseases, and even personalized habits. In the past decade, biologists and bioinformaticians have concentrated their research effort on the potential roles of the gut microbiome in the development of human diseases, particularly immune-mediated diseases and colorectal cancer, and have initiated the assessment of the impact of the gut microbiome on the host genome. In the present chapter, we focus on the biological features of gut microbiota, its physiology as a biological factory, and its impacts on the host's health and disease status.
Collapse
Affiliation(s)
- Alireza Minagar
- Department of Biotechnology (Bioinformatics), University of Maryland Global Campus, Adelphi, MD, USA
| | - Rabih Jabbour
- University of Maryland Global Campus, Largo, MD, USA
| |
Collapse
|
6
|
Lu S, Xu J, Zhao Z, Guo Y, Zhang H, Jurutka PW, Huang D, Cao C, Cheng S. Dietary Lactobacillus rhamnosus GG extracellular vesicles enhance antiprogrammed cell death 1 (anti-PD-1) immunotherapy efficacy against colorectal cancer. Food Funct 2023; 14:10314-10328. [PMID: 37916395 DOI: 10.1039/d3fo02018e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
There is a need to explore combination therapy to improve the efficacy of immunotherapy for colorectal cancer through food probiotics. In this study, extracellular vesicles (EV) derived from Lactobacillus rhamnosus GG (LGG-EV) were successfully isolated. Adjusting the culture temperature to 30 °C led to an elevated LGG-EV yield, and the addition of penicillin resulted in a decrease in particle size. In addition, LGG-EV have better gastrointestinal tract stability in a Ca2+ environment in vivo and in vitro. Oral administration of LGG-EV synergistically improved anti-PD-1 immunotherapy efficacy against colorectal cancer. Mechanistically, LGG-EV modulated intestinal immunity by increasing the CD8+ T/CD4+ T cell ratio in mesenteric lymph nodes and enhancing the ratio of MHC II+ DC cells, CD4+ T cells, and CD8+ T cells in tumor tissues. Meanwhile, the diversity of the gut microbiota and the abundance of beneficial bacteria, such as Lactobacillus, increased in the combined-treatment mice. In addition, there were significant changes in the levels of serum metabolites associated with the microbiota and anti-tumor effects, including uridine, which was elevated by the combination of anti-PD-1 and LGG-EV treatment. Our findings provide theoretical and mechanistic insights into the development of LGG-EV as postbiotics in combination with immune checkpoint inhibitors for cancer therapy.
Collapse
Affiliation(s)
- Shun Lu
- Department of Food Nutrition and Safety, School of Engineering, China Pharmaceutical University, Nanjing 211198, P. R. China.
| | - Jing Xu
- Department of Food Nutrition and Safety, School of Engineering, China Pharmaceutical University, Nanjing 211198, P. R. China.
| | - Zihao Zhao
- Department of Food Nutrition and Safety, School of Engineering, China Pharmaceutical University, Nanjing 211198, P. R. China.
| | - Yuheng Guo
- Department of Food Nutrition and Safety, School of Engineering, China Pharmaceutical University, Nanjing 211198, P. R. China.
| | - Hanwen Zhang
- Department of Food Nutrition and Safety, School of Engineering, China Pharmaceutical University, Nanjing 211198, P. R. China.
| | - Peter W Jurutka
- School of Mathematical and Natural Sciences, Arizona State University, AZ 85306, USA
| | - Dechun Huang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Chongjiang Cao
- Department of Food Nutrition and Safety, School of Engineering, China Pharmaceutical University, Nanjing 211198, P. R. China.
| | - Shujie Cheng
- Department of Food Nutrition and Safety, School of Engineering, China Pharmaceutical University, Nanjing 211198, P. R. China.
| |
Collapse
|
7
|
Shakhpazyan N, Mikhaleva L, Bedzhanyan A, Gioeva Z, Sadykhov N, Mikhalev A, Atiakshin D, Buchwalow I, Tiemann M, Orekhov A. Cellular and Molecular Mechanisms of the Tumor Stroma in Colorectal Cancer: Insights into Disease Progression and Therapeutic Targets. Biomedicines 2023; 11:2361. [PMID: 37760801 PMCID: PMC10525158 DOI: 10.3390/biomedicines11092361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/31/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Colorectal cancer (CRC) is a major health burden worldwide and is the third most common type of cancer. The early detection and diagnosis of CRC is critical to improve patient outcomes. This review explores the intricate interplay between the tumor microenvironment, stromal interactions, and the progression and metastasis of colorectal cancer. The review begins by assessing the gut microbiome's influence on CRC development, emphasizing its association with gut-associated lymphoid tissue (GALT). The role of the Wnt signaling pathway in CRC tumor stroma is scrutinized, elucidating its impact on disease progression. Tumor budding, its effect on tumor stroma, and the implications for patient prognosis are investigated. The review also identifies conserved oncogenic signatures (COS) within CRC stroma and explores their potential as therapeutic targets. Lastly, the seed and soil hypothesis is employed to contextualize metastasis, accentuating the significance of both tumor cells and the surrounding stroma in metastatic propensity. This review highlights the intricate interdependence between CRC cells and their microenvironment, providing valuable insights into prospective therapeutic approaches targeting tumor-stroma interactions.
Collapse
Affiliation(s)
- Nikolay Shakhpazyan
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Center of Surgery, 119435 Moscow, Russia; (N.S.); (L.M.); (Z.G.); (N.S.); (A.O.)
| | - Liudmila Mikhaleva
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Center of Surgery, 119435 Moscow, Russia; (N.S.); (L.M.); (Z.G.); (N.S.); (A.O.)
| | - Arkady Bedzhanyan
- Department of Abdominal Surgery and Oncology II (Coloproctology and Uro-Gynecology), Petrovsky National Research Center of Surgery, 119435 Moscow, Russia;
| | - Zarina Gioeva
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Center of Surgery, 119435 Moscow, Russia; (N.S.); (L.M.); (Z.G.); (N.S.); (A.O.)
| | - Nikolay Sadykhov
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Center of Surgery, 119435 Moscow, Russia; (N.S.); (L.M.); (Z.G.); (N.S.); (A.O.)
| | - Alexander Mikhalev
- Department of Hospital Surgery No. 2, Pirogov Russian National Research Medical University, 117997 Moscow, Russia;
| | - Dmitri Atiakshin
- Research and Educational Resource Center for Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis Innovative Technologies, Peoples’ Friendship University of Russia, 117198 Moscow, Russia;
- Research Institute of Experimental Biology and Medicine, Burdenko Voronezh State Medical University, 394036 Voronezh, Russia
| | - Igor Buchwalow
- Research and Educational Resource Center for Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis Innovative Technologies, Peoples’ Friendship University of Russia, 117198 Moscow, Russia;
- Institute for Hematopathology, 22547 Hamburg, Germany;
| | | | - Alexander Orekhov
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Center of Surgery, 119435 Moscow, Russia; (N.S.); (L.M.); (Z.G.); (N.S.); (A.O.)
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia
- Institute for Atherosclerosis Research, 121096 Moscow, Russia
| |
Collapse
|
8
|
The Crosstalk between the Gut Microbiota Composition and the Clinical Course of Allergic Rhinitis: The Use of Probiotics, Prebiotics and Bacterial Lysates in the Treatment of Allergic Rhinitis. Nutrients 2022; 14:nu14204328. [PMID: 36297012 PMCID: PMC9607052 DOI: 10.3390/nu14204328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 11/26/2022] Open
Abstract
Although massive progress in discovering allergic rhinitis (AR) aetiology has been made in recent years, its prevalence is still rising and it significantly impacts patients' lives. That is why further and non-conventional research elucidating the role of new factors in AR pathogenesis is needed, facilitating discoveries of new treatment approaches. One of these factors is the gut microbiota, with its specific roles in health and disease. This review presents the process of gut microbiota development, especially in early life, focusing on its impact on the immune system. It emphasizes the link between the gut microbiota composition and immune changes involved in AR development. Specifically, it elucidates the significant link between bacteria colonizing the gut and the Th1/Th2 imbalance. Probiotics, prebiotics and bacterial lysates, which are medications that restore the composition of intestinal bacteria and indirectly affect the clinical course of AR, are also discussed.
Collapse
|
9
|
Lin YM, Hegde S, Cong Y, Shi XZ. Mechanisms of lymphoid depletion in bowel obstruction. Front Physiol 2022; 13:1005088. [PMID: 36213246 PMCID: PMC9533077 DOI: 10.3389/fphys.2022.1005088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/07/2022] [Indexed: 12/15/2022] Open
Abstract
Background and aims: Bowel obstruction (BO) causes not only gastrointestinal dysfunctions but also systemic responses such as sepsis, infections, and immune impairments. The mechanisms involved are not well understood. In this study, we tested the hypothesis that BO leads to lymphoid depletion in primary and peripheral lymphoid organs, which may contribute to systemic responses. We also sought to uncover mechanisms of lymphoid depletion in BO. Methods: Partial colon obstruction was induced with a band in the distal colon of Sprague-Dawley rats, and wild-type and osteopontin knockout (OPN-/-) mice. Obstruction was maintained for 7 days in rats and 4 days in mice. Thymus, bone marrow, spleen, and mesenteric lymph node (MLN) were taken for flow cytometry analysis. Results: The weight of thymus, spleen, and MLN was significantly decreased in BO rats, compared to sham. B and T lymphopoiesis in the bone marrow and thymus was suppressed, and numbers of lymphocytes, CD4+, and CD8+ T cells in the spleen and MLN were all decreased in BO. Depletion of gut microbiota blocked BO-associated lymphopenia in the MLN. Corticosterone antagonism partially attenuated BO-associated reduction of lymphocytes in the thymus and bone marrow. Plasma OPN levels and OPN expression in the distended colon were increased in BO. Deletion of the OPN gene did not affect splenic lymphopenia, but attenuated suppression of lymphopoiesis in the bone marrow and thymus in BO. Conclusions: BO suppresses lymphocyte generation and maintenance in lymphoid organs. Mechanical distention-induced OPN, corticosterone, and gut microbiota are involved in the immune phenotype in BO.
Collapse
Affiliation(s)
- You-Min Lin
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, United States,Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Shrilakshmi Hegde
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, United States
| | - Yingzi Cong
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Xuan-Zheng Shi
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, United States,*Correspondence: Xuan-Zheng Shi,
| |
Collapse
|
10
|
Feng J, Zhang C, Chen H, Chen Z, Chen Y, He D, Pan Q, Zhou Y, Chen Z, Zhuang X. Shen-Ling-Bai-Zhu-San Enhances the Antipneumonia Effect of Cefixime in Children by Ameliorating Gut Microflora, Inflammation, and Immune Response. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:7752426. [PMID: 36118084 PMCID: PMC9473888 DOI: 10.1155/2022/7752426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/09/2022] [Accepted: 08/20/2022] [Indexed: 11/24/2022]
Abstract
Objective Shen-Ling-Bai-Zhu-San (SLBZS) is used for treating gastrointestinal disorders. However, the role of SLBZS in treating pneumonia in children is still unclear. Methods In this study, children (≥2 and <9 years) with pneumonia were treated with 0.1 g cefixime (cefixime group) or 0.1 g cefixime + 9 g SLBZS (SLBZS + cefixime). The drugs were administered twice daily for 10 days. The therapeutic effects of the two groups were compared. The white blood cell (WBC), neutrophil, and lymphocyte counts; neutrophil-lymphocyte ratio (NLR); serum inflammatory factor levels; and gut microflora were assessed. Results The clinical efficacy of SLBZS + cefixime treatment of pneumonia in children was higher than that of cefixime alone (93.3% vs. 86.7%). Both cefixime and SLBZS + cefixime treatments decreased the area of pulmonary inflammatory lesions, reduced white blood cell and neutrophil counts, neutrophil-lymphocyte ratio, inflammation, and increased lymphocyte count in children with pneumonia compared with those before treatment. Moreover, SLBZS enhanced the anti-inflammation and immunity-enhancing effects of cefixime in children with pneumonia. SLBZS + cefixime treatment decreased Enterobacter, Enterococcus, Bacteroides, and Fusobacterium counts and increased Bifidobacterium and Lactobacillus counts. Compared with the cefixime treatment group, the count of the six bacterial strains in the SLBZS + cefixime treatment group was closer to the normal level. Conclusion SLBZS enhanced the antipneumonia effect of cefixime in children with pneumonia by ameliorating gut microflora, inflammation, and immune response.
Collapse
Affiliation(s)
- Jinli Feng
- Emergency Department, Zhongshan Hospital, Guangzhou University of Chinese Medicine, Zhongshan, Guangdong 528401, China
| | - Cheng Zhang
- Clinical Laboratory, Zhongshan Hospital, Guangzhou University of Chinese Medicine, Zhongshan, Guangdong 528401, China
| | - Houjun Chen
- Emergency Department, Zhongshan Hospital, Guangzhou University of Chinese Medicine, Zhongshan, Guangdong 528401, China
| | - Ziliang Chen
- Emergency Department, Zhongshan Hospital, Guangzhou University of Chinese Medicine, Zhongshan, Guangdong 528401, China
| | - Yongfeng Chen
- Emergency Department, Zhongshan Hospital, Guangzhou University of Chinese Medicine, Zhongshan, Guangdong 528401, China
| | - Degen He
- Pediatrics, Zhongshan Hospital, Guangzhou University of Chinese Medicine, Zhongshan, Guangdong 528401, China
| | - Qianyi Pan
- Prevention and Health Section, Zhongshan Hospital, Guangzhou University of Chinese Medicine, Zhongshan, Guangdong 528401, China
| | - Yongmao Zhou
- Pediatrics, Zhongshan Hospital, Guangzhou University of Chinese Medicine, Zhongshan, Guangdong 528401, China
| | - Zhaoyang Chen
- Pediatrics, Zhongshan Hospital, Guangzhou University of Chinese Medicine, Zhongshan, Guangdong 528401, China
| | - Xiaozheng Zhuang
- Pediatrics, Zhongshan Hospital, Guangzhou University of Chinese Medicine, Zhongshan, Guangdong 528401, China
| |
Collapse
|
11
|
Zhang X, Li H, Lv X, Hu L, Li W, Zi M, He Y. Impact of Diets on Response to Immune Checkpoint Inhibitors (ICIs) Therapy against Tumors. Life (Basel) 2022; 12:409. [PMID: 35330159 PMCID: PMC8951256 DOI: 10.3390/life12030409] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/02/2022] [Accepted: 03/08/2022] [Indexed: 12/12/2022] Open
Abstract
Immunotherapy has revolutionized the established therapeutics against tumors. As the major immunotherapy approach, immune checkpoint inhibitors (ICIs) achieved remarkable success in the treatment of malignancies. However, the clinical gains are far from universal and durable, because of the primary and secondary resistance of tumors to the therapy, or side effects induced by ICIs. There is an urgent need to find safe combinatorial strategies that enhance the response of ICIs for tumor treatment. Diets have an excellent safety profile and have been shown to play pleiotropic roles in tumor prevention, growth, invasion, and metastasis. Accumulating evidence suggests that dietary regimens bolster not only the tolerability but also the efficacy of tumor immunotherapy. In this review, we discussed the mechanisms by which tumor cells evade immune surveillance, focusing on describing the intrinsic and extrinsic mechanisms of resistance to ICIs. We also summarized the impacts of different diets and/or nutrients on the response to ICIs therapy. Combinatory treatments of ICIs therapy with optimized diet regimens own great potential to enhance the efficacy and durable response of ICIs against tumors, which should be routinely considered in clinical settings.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Clinical Nutrition, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China;
| | - Huiqin Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China; (H.L.); (L.H.); (M.Z.)
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
| | - Xiupeng Lv
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China;
| | - Li Hu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China; (H.L.); (L.H.); (M.Z.)
- Department of Geriatrics, The Second Affiliated Hospital of Hainan Medical University, Haikou 570216, China
| | - Wen Li
- Department of Endocrinology, The Third People’s Hospital of Yunnan Province, Kunming 650011, China;
| | - Meiting Zi
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China; (H.L.); (L.H.); (M.Z.)
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
| | - Yonghan He
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China; (H.L.); (L.H.); (M.Z.)
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
| |
Collapse
|
12
|
Xi L, Qin X, Song Y, Han J, Li Z, Zhang J. Gut Microbial Alterations in Diarrheal Baer's Pochards ( Aythya baeri). Front Vet Sci 2021; 8:756486. [PMID: 34722711 PMCID: PMC8551490 DOI: 10.3389/fvets.2021.756486] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/03/2021] [Indexed: 01/07/2023] Open
Abstract
The structure and composition of gut microbiota correlate with the occurrence and development of host health and disease. Diarrhea can cause alterations in gut microbiota in animals, and the changes in the gut microbial structure and composition may affect the development of diarrhea. However, there is a scarcity of information on the effects of diarrhea on gut fungal composition and structure, particularly in Baer's pochard (Aythya baeri). The current study was performed for high-throughput sequencing of the fungal-specific internal transcribed spacer 1 (ITS-1) to detect the differences of gut mycobiota in healthy and diarrheal Baer's pochard. Results showed that the gut mycobiota not only decreased significantly in diversity but also in structure and composition. Statistical analysis between two groups revealed a significant decrease in the abundance of phylum Rozellomycota, Zoopagomycota, Mortierellomycota, and Kickxellomycota in diarrheal Baer's pochard. At the genus levels, fungal relative abundance changed significantly in 95 genera, with 56 fungal genera, such as Wickerhamomyces, Alternaria, Penicillium, Cystofilobasidium, and Filobasidium, increasing significantly in the gut of the diarrheal Baer's pochard. In conclusion, the current study revealed the discrepancy in the gut fungal diversity and community composition between the healthy and diarrheal Baer's pochard, laying the basis for elucidating the relationship between diarrhea and the gut mycobiota in Baer's pochard.
Collapse
Affiliation(s)
- Li Xi
- Department of Animal Science, College of Biology and Food, Shangqiu Normal University, Shangqiu, China.,Henan Engineering Research Center of Development and Application of Green Feed Additives, College of Biology and Food, Shangqiu Normal University, Shangqiu, China
| | - Xinxi Qin
- Department of Animal Science, College of Biology and Food, Shangqiu Normal University, Shangqiu, China
| | - Yumin Song
- Linyi Agricultural Science and Technology Career Academy, Linyi, China
| | - Jincheng Han
- Department of Animal Science, College of Biology and Food, Shangqiu Normal University, Shangqiu, China.,Henan Engineering Research Center of Development and Application of Green Feed Additives, College of Biology and Food, Shangqiu Normal University, Shangqiu, China
| | - Zhiqiang Li
- Department of Animal Science, College of Biology and Food, Shangqiu Normal University, Shangqiu, China.,Henan Engineering Research Center of Development and Application of Green Feed Additives, College of Biology and Food, Shangqiu Normal University, Shangqiu, China
| | - Jinliang Zhang
- Department of Animal Science, College of Biology and Food, Shangqiu Normal University, Shangqiu, China.,Henan Engineering Research Center of Development and Application of Green Feed Additives, College of Biology and Food, Shangqiu Normal University, Shangqiu, China
| |
Collapse
|