1
|
Abugessaisa I, Manabe RI, Kawashima T, Tagami M, Takahashi C, Okazaki Y, Bandinelli S, Kasukawa T, Ferrucci L. OVCH1 Antisense RNA 1 is differentially expressed between non-frail and frail old adults. GeroScience 2024; 46:2063-2081. [PMID: 37817005 PMCID: PMC10828349 DOI: 10.1007/s11357-023-00961-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/24/2023] [Indexed: 10/12/2023] Open
Abstract
While some old adults stay healthy and non-frail up to late in life, others experience multimorbidity and frailty often accompanied by a pro-inflammatory state. The underlying molecular mechanisms for those differences are still obscure. Here, we used gene expression analysis to understand the molecular underpinning between non-frail and frail individuals in old age. Twenty-four adults (50% non-frail and 50% frail) from InCHIANTI study were included. Total RNA extracted from whole blood was analyzed by Cap Analysis of Gene Expression (CAGE). CAGE identified transcription start site (TSS) and active enhancer regions. We identified a set of differentially expressed (DE) TSS and enhancer between non-frail and frail and male and female participants. Several DE TSSs were annotated as lncRNA (XIST and TTTY14) and antisense RNAs (ZFX-AS1 and OVCH1 Antisense RNA 1). The promoter region chr6:366,786,54-366,787,97;+ was DE and overlapping the longevity CDKN1A gene. GWAS-LD enrichment analysis identifies overlapping LD-blocks with the DE regions with reported traits in GWAS catalog (isovolumetric relaxation time and urinary tract infection frequency). Furthermore, we used weighted gene co-expression network analysis (WGCNA) to identify changes of gene expression associated with clinical traits and identify key gene modules. We performed functional enrichment analysis of the gene modules with significant trait/module correlation. One gene module is showing a very distinct pattern in hub genes. Glycogen Phosphorylase L (PYGL) was the top ranked hub gene between non-frail and frail. We predicted transcription factor binding sites (TFBS) and motif activity. TF involved in age-related pathways (e.g., FOXO3 and MYC) shows different expression patterns between non-frail and frail participants. Expanding the study of OVCH1 Antisense RNA 1 and PYGL may help understand the mechanisms leading to loss of homeostasis that ultimately causes frailty.
Collapse
Affiliation(s)
- Imad Abugessaisa
- Laboratory for Large-Scale Biomedical Data Technology, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa, 230-0045, Japan.
| | - Ri-Ichiroh Manabe
- Laboratory for Comprehensive Genomic Analysis, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa, 230-0045, Japan
| | - Tsugumi Kawashima
- Laboratory for Comprehensive Genomic Analysis, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa, 230-0045, Japan
| | - Michihira Tagami
- Laboratory for Comprehensive Genomic Analysis, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa, 230-0045, Japan
| | - Chitose Takahashi
- Laboratory for Comprehensive Genomic Analysis, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa, 230-0045, Japan
| | - Yasushi Okazaki
- Laboratory for Comprehensive Genomic Analysis, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa, 230-0045, Japan
| | - Stefania Bandinelli
- Azienda USL Toscana Centro, InCHIANTI, Villa Margherita, Primo piano Viale Michelangelo, 41, 50125, Firenze, Italy
| | - Takeya Kasukawa
- Laboratory for Large-Scale Biomedical Data Technology, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa, 230-0045, Japan
- Institute for Protein Research, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Luigi Ferrucci
- National Institute on Aging, National Institutes of Health, MedStar Harbor Hospital 5th floor, 3001 S. Hanover Street, Baltimore, MD, 21225, USA
| |
Collapse
|
2
|
Seki M, Kuze Y, Zhang X, Kurotani KI, Notaguchi M, Nishio H, Kudoh H, Suzaki T, Yoshida S, Sugano S, Matsushita T, Suzuki Y. An improved method for the highly specific detection of transcription start sites. Nucleic Acids Res 2024; 52:e7. [PMID: 37994784 PMCID: PMC10810191 DOI: 10.1093/nar/gkad1116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 10/17/2023] [Accepted: 11/06/2023] [Indexed: 11/24/2023] Open
Abstract
Precise detection of the transcriptional start site (TSS) is a key for characterizing transcriptional regulation of genes and for annotation of newly sequenced genomes. Here, we describe the development of an improved method, designated 'TSS-seq2.' This method is an iterative improvement of TSS-seq, a previously published enzymatic cap-structure conversion method to detect TSSs in base sequences. By modifying the original procedure, including by introducing split ligation at the key cap-selection step, the yield and the accuracy of the reaction has been substantially improved. For example, TSS-seq2 can be conducted using as little as 5 ng of total RNA with an overall accuracy of 96%; this yield a less-biased and more precise detection of TSS. We then applied TSS-seq2 for TSS analysis of four plant species that had not yet been analyzed by any previous TSS method.
Collapse
Affiliation(s)
- Masahide Seki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Yuta Kuze
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Xiang Zhang
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, Japan
| | - Ken-ichi Kurotani
- Bioscience and Biotechnology Center, Nagoya University, Aichi, Japan
| | - Michitaka Notaguchi
- Bioscience and Biotechnology Center, Nagoya University, Aichi, Japan
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto, Japan
- Graduate School of Bioagricultural Sciences, Nagoya University, Aichi, Nagoya, Japan
| | - Haruki Nishio
- Data Science and AI Innovation Research Promotion Center, Shiga University, Shiga, Japan
| | - Hiroshi Kudoh
- Center for Ecological Research, Kyoto University, Shiga, Japan
| | - Takuya Suzaki
- Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan
- Tsukuba Plant-Innovation Research Center, University of Tsukuba, Ibaraki, Japan
| | - Satoko Yoshida
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, Japan
| | - Sumio Sugano
- Institute of Kashiwa-no-ha Omics Gate, Chiba, Japan
- Future Medicine Education and Research Organization, Chiba University, Chiba, Japan
| | - Tomonao Matsushita
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| |
Collapse
|
3
|
Yip CW, Hon CC, Yasuzawa K, Sivaraman DM, Ramilowski JA, Shibayama Y, Agrawal S, Prabhu AV, Parr C, Severin J, Lan YJ, Dostie J, Petri A, Nishiyori-Sueki H, Tagami M, Itoh M, López-Redondo F, Kouno T, Chang JC, Luginbühl J, Kato M, Murata M, Yip WH, Shu X, Abugessaisa I, Hasegawa A, Suzuki H, Kauppinen S, Yagi K, Okazaki Y, Kasukawa T, de Hoon M, Carninci P, Shin JW. Antisense-oligonucleotide-mediated perturbation of long non-coding RNA reveals functional features in stem cells and across cell types. Cell Rep 2022; 41:111893. [PMID: 36577377 DOI: 10.1016/j.celrep.2022.111893] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 08/30/2022] [Accepted: 12/07/2022] [Indexed: 12/28/2022] Open
Abstract
Within the scope of the FANTOM6 consortium, we perform a large-scale knockdown of 200 long non-coding RNAs (lncRNAs) in human induced pluripotent stem cells (iPSCs) and systematically characterize their roles in self-renewal and pluripotency. We find 36 lncRNAs (18%) exhibiting cell growth inhibition. From the knockdown of 123 lncRNAs with transcriptome profiling, 36 lncRNAs (29.3%) show molecular phenotypes. Integrating the molecular phenotypes with chromatin-interaction assays further reveals cis- and trans-interacting partners as potential primary targets. Additionally, cell-type enrichment analysis identifies lncRNAs associated with pluripotency, while the knockdown of LINC02595, CATG00000090305.1, and RP11-148B6.2 modulates colony formation of iPSCs. We compare our results with previously published fibroblasts phenotyping data and find that 2.9% of the lncRNAs exhibit a consistent cell growth phenotype, whereas we observe 58.3% agreement in molecular phenotypes. This highlights that molecular phenotyping is more comprehensive in revealing affected pathways.
Collapse
Affiliation(s)
- Chi Wai Yip
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Chung-Chau Hon
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Kayoko Yasuzawa
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Divya M Sivaraman
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan; Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala 695 011, India
| | - Jordan A Ramilowski
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan; Advanced Medical Research Center, Yokohama City University, Yokohama, Kanagawa 236-0004, Japan
| | - Youtaro Shibayama
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Saumya Agrawal
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Anika V Prabhu
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Callum Parr
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Jessica Severin
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Yan Jun Lan
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Josée Dostie
- Department of Biochemistry, Rosalind and Morris Goodman Cancer Research Center, McGill University, Montréal, QC, Canada
| | - Andreas Petri
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, Copenhagen 2450, Denmark
| | | | - Michihira Tagami
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Masayoshi Itoh
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | | | - Tsukasa Kouno
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Jen-Chien Chang
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Joachim Luginbühl
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Masaki Kato
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Mitsuyoshi Murata
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Wing Hin Yip
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Xufeng Shu
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan; Department of Computational Biology and Medical Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8562, Japan
| | - Imad Abugessaisa
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Akira Hasegawa
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Harukazu Suzuki
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Sakari Kauppinen
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, Copenhagen 2450, Denmark
| | - Ken Yagi
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Yasushi Okazaki
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Takeya Kasukawa
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Michiel de Hoon
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Piero Carninci
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan; Human Technopole, via Rita Levi Montalcini 1, Milan, Italy
| | - Jay W Shin
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan; Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore 138672, Singapore.
| |
Collapse
|
4
|
Brancato V, Brentari I, Coscujuela Tarrero L, Furlan M, Nicassio F, Denti MA. News from around the RNA world: new avenues in RNA biology, biotechnology and therapeutics from the 2022 SIBBM meeting. Biol Open 2022; 11:bio059597. [PMID: 36239357 PMCID: PMC9581514 DOI: 10.1242/bio.059597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Since the formalization of the Central Dogma of molecular biology, the relevance of RNA in modulating the flow of information from DNA to proteins has been clear. More recently, the discovery of a vast set of non-coding transcripts involved in crucial aspects of cellular biology has renewed the enthusiasm of the RNA community. Moreover, the remarkable impact of RNA therapies in facing the COVID19 pandemics has bolstered interest in the translational opportunities provided by this incredible molecule. For all these reasons, the Italian Society of Biophysics and Molecular Biology (SIBBM) decided to dedicate its 17th yearly meeting, held in June 2022 in Rome, to the many fascinating aspects of RNA biology. More than thirty national and international speakers covered the properties, modes of action and applications of RNA, from its role in the control of development and cell differentiation to its involvement in disease. Here, we summarize the scientific content of the conference, highlighting the take-home message of each presentation, and we stress the directions the community is currently exploring to push forward our comprehension of the RNA World 3.0.
Collapse
Affiliation(s)
- Virginia Brancato
- Center for Genomic Science IIT@SEMM, Italian Institute of Technology, Milan 20139, Italy
| | - Ilaria Brentari
- Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento 38123, Italy
| | | | - Mattia Furlan
- Center for Genomic Science IIT@SEMM, Italian Institute of Technology, Milan 20139, Italy
| | - Francesco Nicassio
- Center for Genomic Science IIT@SEMM, Italian Institute of Technology, Milan 20139, Italy
| | - Michela A. Denti
- Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento 38123, Italy
| |
Collapse
|