1
|
Qin R, Zhang Y, Yang Y, Chen J, Huang L, Xu W, Qin Q, Liang X, Lai X, Huang X, Xie M, Chen L. Decoding single-cell molecular mechanisms in astrocyte-to-iN reprogramming via Ngn2- and Pax6-mediated direct lineage switching. Eur J Med Res 2024; 29:390. [PMID: 39068473 PMCID: PMC11282629 DOI: 10.1186/s40001-024-01989-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024] Open
Abstract
BACKGROUND The limited regenerative capacity of damaged neurons in adult mammals severely restricts neural repair. Although stem cell transplantation is promising, its clinical application remains challenging. Direct reprogramming, which utilizes cell plasticity to regenerate neurons, is an emerging alternative approach. METHODS We utilized primary postnatal cortical astrocytes for reprogramming induced neurons (iNs) through the viral-mediated overexpression of the transcription factors Ngn2 and Pax6 (NP). Fluorescence-activated cell sorting (FACS) was used to enrich successfully transfected cells, followed by single-cell RNA sequencing (scRNA-seq) using the 10 × Genomics platform for comprehensive transcriptomic analysis. RESULTS The scRNA-seq revealed that NP overexpression led to the differentiation of astrocytes into iNs, with percentages of 36% and 39.3% on days 4 and 7 posttransduction, respectively. CytoTRACE predicted the developmental sequence, identifying astrocytes as the reprogramming starting point. Trajectory analysis depicted the dynamic changes in gene expression during the astrocyte-to-iN transition. CONCLUSIONS This study elucidates the molecular dynamics underlying astrocyte reprogramming into iNs, revealing key genes and pathways involved in this process. Our research contributes novel insights into the molecular mechanisms of NP-mediated reprogramming, suggesting avenues for optimizing the efficiency of the reprogramming process.
Collapse
Affiliation(s)
- Rongxing Qin
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Yingdan Zhang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Yue Yang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
- National Center for International Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Theranostics, Guangxi Medical University, Nanning, 530021, China
| | - Jiafeng Chen
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
- National Center for International Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Theranostics, Guangxi Medical University, Nanning, 530021, China
| | - Lijuan Huang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
- National Center for International Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Theranostics, Guangxi Medical University, Nanning, 530021, China
| | - Wei Xu
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
- National Center for International Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Theranostics, Guangxi Medical University, Nanning, 530021, China
| | - Qingchun Qin
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
- National Center for International Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Theranostics, Guangxi Medical University, Nanning, 530021, China
| | - Xiaojun Liang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Xinyu Lai
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Xiaoying Huang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Minshan Xie
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Li Chen
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China.
- National Center for International Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Theranostics, Guangxi Medical University, Nanning, 530021, China.
| |
Collapse
|
2
|
Yang R, Pan J, Wang Y, Xia P, Tai M, Jiang Z, Chen G. Application and prospects of somatic cell reprogramming technology for spinal cord injury treatment. Front Cell Neurosci 2022; 16:1005399. [PMID: 36467604 PMCID: PMC9712200 DOI: 10.3389/fncel.2022.1005399] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 11/02/2022] [Indexed: 08/10/2023] Open
Abstract
Spinal cord injury (SCI) is a serious neurological trauma that is challenging to treat. After SCI, many neurons in the injured area die due to necrosis or apoptosis, and astrocytes, oligodendrocytes, microglia and other non-neuronal cells become dysfunctional, hindering the repair of the injured spinal cord. Corrective surgery and biological, physical and pharmacological therapies are commonly used treatment modalities for SCI; however, no current therapeutic strategies can achieve complete recovery. Somatic cell reprogramming is a promising technology that has gradually become a feasible therapeutic approach for repairing the injured spinal cord. This revolutionary technology can reprogram fibroblasts, astrocytes, NG2 cells and neural progenitor cells into neurons or oligodendrocytes for spinal cord repair. In this review, we provide an overview of the transcription factors, genes, microRNAs (miRNAs), small molecules and combinations of these factors that can mediate somatic cell reprogramming to repair the injured spinal cord. Although many challenges and questions related to this technique remain, we believe that the beneficial effect of somatic cell reprogramming provides new ideas for achieving functional recovery after SCI and a direction for the development of treatments for SCI.
Collapse
Affiliation(s)
- Riyun Yang
- Department of Histology and Embryology, Medical School of Nantong University, Nantong, China
| | - Jingying Pan
- Department of Histology and Embryology, Medical School of Nantong University, Nantong, China
| | - Yankai Wang
- Center for Basic Medical Research, Medical School of Nantong University, Nantong, China
| | - Panhui Xia
- Center for Basic Medical Research, Medical School of Nantong University, Nantong, China
| | - Mingliang Tai
- Center for Basic Medical Research, Medical School of Nantong University, Nantong, China
| | - Zhihao Jiang
- Center for Basic Medical Research, Medical School of Nantong University, Nantong, China
| | - Gang Chen
- Center for Basic Medical Research, Medical School of Nantong University, Nantong, China
- Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
3
|
Yuan Y, Liu L, Du Y, Fan R, Zhang R, Zhou N. p-hydroxy benzaldehyde revitalizes the microenvironment of peri-infarct cortex in rats after cerebral ischemia-reperfusion. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 105:154379. [PMID: 35987017 DOI: 10.1016/j.phymed.2022.154379] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/21/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The formation of glial scar around the ischemic core following cerebral blood interruption exerts a protective effect in the subacute phase but impedes neurorepair in the chronic phase. Therefore, the present study aimed to explore whether p-hydroxy benzaldehyde (p-HBA), a phenolic compound isolated from Gastrodia elata Blume, can cut the Gordian knot of glial scar and promote brain repair after cerebral ischemia. METHODS The effects of p-HBA on neurorepair were evaluated using a rat model of transient middle cerebral artery occlusion (tMCAO). The motor functions were evaluated by neurobehavioral tests, the pathophysiological processes in the peri-infarct cortex (PIC) were detected by viral-based lineage tracking or immunofluorescence staining, and the putative signaling pathway was analyzed by western blot. RESULTS Administration of p-HBA in the acute stage after stroke onset alleviated the motor impairment in tMCAO rats in a time-dependent manner. The corresponding cellular events were inhibition of astrogliosis, facilitating the conversion of reactive astrocytes (RAs) into neurons, and prompting angiogenesis in PIC, thereby protecting the structure of the neurovascular unit (NVU). One of the underlying molecular mechanisms is the activation of the neurogenic switch of the Wnt/β-catenin signaling pathway. Notably, p-HBA only promotes astrocyte-to-neuron conversion in the PIC, and only partial RAs were converted to neurons. This pattern of conversion ensures that the brain structure remains unaltered, and the beneficial role of glial scarring is preserved during the subacute phase after ischemia. CONCLUSIONS These results provided a potential approach to address the dilemma of glial scarring after brain injury, i.e., the pharmacological promotion of astrocyte-to-neuron conversion in the PIC without interfering with normal brain tissue, which mitigates but does not eliminate the glial scar. Subsequently, the neuron rescue-unfriendly environment is switched to a beneficial reconstruction milieu in PIC, which is conducive to neurorepair. Moreover, p-HBA could be a candidate for pharmacological intervention.
Collapse
Affiliation(s)
- Yajin Yuan
- College of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine, 1076 Yuhua Rd, Chenggong City, Kunming, Yunnan 650500, China
| | - Lijun Liu
- College of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine, 1076 Yuhua Rd, Chenggong City, Kunming, Yunnan 650500, China
| | - Yao Du
- College of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine, 1076 Yuhua Rd, Chenggong City, Kunming, Yunnan 650500, China
| | - Ruoxi Fan
- College of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine, 1076 Yuhua Rd, Chenggong City, Kunming, Yunnan 650500, China
| | - Rongping Zhang
- College of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine, 1076 Yuhua Rd, Chenggong City, Kunming, Yunnan 650500, China
| | - Ningna Zhou
- College of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine, 1076 Yuhua Rd, Chenggong City, Kunming, Yunnan 650500, China.
| |
Collapse
|