1
|
Chen C, Li J, Li Z, Nong Y, Wang J, Wang Z, Li Z. Whole-genome resequencing reveals melanin deposition candidate genes of Luning chicken. BMC Genomics 2024; 25:858. [PMID: 39271972 PMCID: PMC11401408 DOI: 10.1186/s12864-024-10774-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024] Open
Abstract
BACKGROUND Melanin in the black-bone chicken's body is considered the material basis for its medicinal effects and is an economically important trait. Therefore, improving the melanin content is a crucial focus in the breeding process of black-bone chickens. Luning chickens are black-bone chickens, with black beaks, skin, and meat. To investigate the genetic diversity and molecular mechanisms of melanin deposition in Luning chickens, we conducted whole-genome resequencing to analyze their breeding history and identify candidate genes influencing their black phenotype, along with transcriptome sequencing of dorsal skin tissues of male Luning chickens. RESULTS Population structure analysis revealed that Luning chickens tend to cluster independently and are closely related to Tibetan chickens. Runs of homozygosity analysis suggested potential inbreeding in the Luning chicken and Tibetan chicken population. By combining genetic differentiation index (Fst) and nucleotide diversity (θπ) ratios, we pinpointed selected regions associated with melanin deposition. Gene annotation identified 540 genes with the highest Fst value in LOC101750371 and LOC121108313, located on the 68.24-68.58 Mb interval of chromosome Z. Combining genomic and transcriptomic data, we identified ATP5E, EDN3, and LOC101750371 as candidate genes influencing skin color traits in black-bone chickens. CONCLUSIONS This study characterized the evolutionary history of Luning chickens and preliminarily excavated candidate genes influencing the genetic mechanism of pigmentation in black-bone chickens, providing valuable insights for the study of animal melanin deposition.
Collapse
Affiliation(s)
- Chuwen Chen
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization (Southwest Minzu University), Ministry of Education, Chengdu, China
- Key Laboratory of Animal Science of National Ethnic Affairs Commission of China, Southwest Minzu University, Chengdu, China
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, China
| | - Jie Li
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization (Southwest Minzu University), Ministry of Education, Chengdu, China
- Key Laboratory of Animal Science of National Ethnic Affairs Commission of China, Southwest Minzu University, Chengdu, China
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, China
| | - Zhiyi Li
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization (Southwest Minzu University), Ministry of Education, Chengdu, China
- Key Laboratory of Animal Science of National Ethnic Affairs Commission of China, Southwest Minzu University, Chengdu, China
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, China
| | - Yi Nong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization (Southwest Minzu University), Ministry of Education, Chengdu, China
- Key Laboratory of Animal Science of National Ethnic Affairs Commission of China, Southwest Minzu University, Chengdu, China
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, China
| | - Jiayan Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization (Southwest Minzu University), Ministry of Education, Chengdu, China
- Key Laboratory of Animal Science of National Ethnic Affairs Commission of China, Southwest Minzu University, Chengdu, China
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, China
| | - Zi Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization (Southwest Minzu University), Ministry of Education, Chengdu, China
- Key Laboratory of Animal Science of National Ethnic Affairs Commission of China, Southwest Minzu University, Chengdu, China
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, China
| | - Zhixiong Li
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization (Southwest Minzu University), Ministry of Education, Chengdu, China.
- Key Laboratory of Animal Science of National Ethnic Affairs Commission of China, Southwest Minzu University, Chengdu, China.
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, China.
| |
Collapse
|
2
|
Han G, Bai X, Li F, Huang L, Hao Y, Li W, Bu P, Zhang H, Liu X, Xie J. Long non-coding RNA HANR modulates the glucose metabolism of triple negative breast cancer via stabilizing hexokinase 2. Heliyon 2024; 10:e23827. [PMID: 38192790 PMCID: PMC10772629 DOI: 10.1016/j.heliyon.2023.e23827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 12/05/2023] [Accepted: 12/13/2023] [Indexed: 01/10/2024] Open
Abstract
Increasing evidence has demonstrated the oncogenic roles of long non-coding RNA (lncRNA) hepatocellular carcinoma (HCC)-associated long non-coding RNA (HANR) in the development of HCC and lung cancer; however, the involvement of HANR in triple-negative breast cancer (TNBC) remains largely unknown. Our results demonstrated the significant overexpression of HANR in TNBC tissues and cells. Higher HANR levels significantly correlated with the poorer phenotypes in patients with TNBC. HANR down-regulation inhibited the proliferation and cell cycle progression and increased the apoptosis of TNBC cells. Mechanistically, immunoprecipitation-mass spectrometry revealed hexokinase II (HK2) as a direct binding target of HANR. HANR binds to and stabilizes HK2 through the proteasomal pathway. Consistent with the important role of HK2 in cancer cells, HANR depletion represses the glucose absorbance and lactate secretion, thus reprogramming the metabolism of TNBC cells. An in vivo xenograft model also demonstrated that HANR promoted tumor growth and aerobic glycolysis. This study reveals the role of HANR in modulating the glycolysis in TNBC cells by regulating HK2 stability, suggesting that HANR is a potential drug target for TNBC.
Collapse
Affiliation(s)
- Guohui Han
- Department of Breast Surgery, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiangdong Bai
- Department of Breast Surgery, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi, China
| | - Feng Li
- Department of Biochemistry and Molecular Biology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi, China
| | - Li Huang
- Department of Breast Surgery, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yating Hao
- Department of Breast Surgery, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi, China
| | - Weina Li
- Department of radiotherapy, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi, China
| | - Peng Bu
- Department of Pathology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi, China
| | - Huanhu Zhang
- Gastroenterology Department, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xinxin Liu
- Department of Breast Surgery, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jun Xie
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, 030001, China
| |
Collapse
|
3
|
The Emerging Roles of Long Non-Coding RNAs in Intellectual Disability and Related Neurodevelopmental Disorders. Int J Mol Sci 2022; 23:ijms23116118. [PMID: 35682796 PMCID: PMC9181295 DOI: 10.3390/ijms23116118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/23/2022] [Accepted: 05/27/2022] [Indexed: 02/05/2023] Open
Abstract
In the human brain, long non-coding RNAs (lncRNAs) are widely expressed in an exquisitely temporally and spatially regulated manner, thus suggesting their contribution to normal brain development and their probable involvement in the molecular pathology of neurodevelopmental disorders (NDD). Bypassing the classic protein-centric conception of disease mechanisms, some studies have been conducted to identify and characterize the putative roles of non-coding sequences in the genetic pathogenesis and diagnosis of complex diseases. However, their involvement in NDD, and more specifically in intellectual disability (ID), is still poorly documented and only a few genomic alterations affecting the lncRNAs function and/or expression have been causally linked to the disease endophenotype. Considering that a significant fraction of patients still lacks a genetic or molecular explanation, we expect that a deeper investigation of the non-coding genome will unravel novel pathogenic mechanisms, opening new translational opportunities. Here, we present evidence of the possible involvement of many lncRNAs in the etiology of different forms of ID and NDD, grouping the candidate disease-genes in the most frequently affected cellular processes in which ID-risk genes were previously collected. We also illustrate new approaches for the identification and prioritization of NDD-risk lncRNAs, together with the current strategies to exploit them in diagnosis.
Collapse
|