1
|
Yu M, Wang Y, Wang D, Cong H, Yu B. Screening and Exploring the Application of the Multifunctional Antioxidant Peptides MSWLC and TSWLC. Adv Healthc Mater 2024:e2401932. [PMID: 39101317 DOI: 10.1002/adhm.202401932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/18/2024] [Indexed: 08/06/2024]
Abstract
In this study, an antioxidant pentapeptide library is created based on antioxidant characteristics. The peptides are then purified and separated using liquid chromatography/mass spectrometry (LC/MS) and time-of-flight mass spectrometry (TOF). Chemical evaluations identify four peptides with excellent antioxidant activity. The four peptides undergo biocompatibility testing with L-929, NIH 3T3, and Hep-G2 cells. A model of hydrogen peroxide-induced cellular damage in G2 cells shows the peptides' protective and reparative effects against oxidative damage. Two peptides, MSWLC and TSWLC, which perform best overall, are chosen for further analysis. To explore the peptides' potential multifunctionality, acute liver inflammation, keratitis, and aging models are established in mice. MSWLC and TSWLC demonstrate anti-inflammatory and anti-aging properties. An antioxidant emulsion prepared by emulsification is found to be non-irritant in a mouse skin irritation test. In a mouse model exposed to ultraviolet radiation, the sunscreen exhibits excellent UV protection and antioxidant effects. These peptides possess potent antioxidant properties and multifunctionality, indicating broad application potential.
Collapse
Affiliation(s)
- Mingtao Yu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, College of Life Science, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
| | - Yue Wang
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, College of Life Science, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
| | - Dayang Wang
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, College of Life Science, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
| | - Hailin Cong
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, College of Life Science, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, 266071, China
- School of Materials Science and Engineering, Shandong University of Technology, Zibo, 255000, China
| | - Bing Yu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, College of Life Science, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, 266071, China
| |
Collapse
|
2
|
Schmid A, Bello C, Becker CFW. Synthesis of N-Glycosylated Soluble Fas Ligand. Chemistry 2024; 30:e202400120. [PMID: 38363216 DOI: 10.1002/chem.202400120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 02/17/2024]
Abstract
Controlled cell death is essential for the regulation of the immune system and plays a role in pathogen defense. It is often altered in pathogenic conditions such as cancer, viral infections and autoimmune diseases. The Fas receptor and its corresponding membrane-bound ligand (FasL) are part of the extrinsic apoptosis pathway activated in these cases. A soluble form of FasL (sFasL), produced by ectodomain shedding, displays a diverse but still elusive set of non-apoptotic functions and sometimes even serves as a pro-survival factor. To gather more knowledge about the characteristics of this protein and the impact N-glycosylations may have, access to homogeneous posttranslationally modified variants of sFasL is needed. Therefore, we developed a flexible strategy to obtain such homogeneously N-glycosylated variants of sFasL by applying chemical protein synthesis. This strategy can be flexibly combined with enzymatic methods to introduce more complex, site selective glycosylations.
Collapse
Affiliation(s)
- Alanca Schmid
- Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 38, 1090, Vienna, Austria
| | - Claudia Bello
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 13, 50019, Sesto Fiorentino FI, Italy
| | - Christian F W Becker
- Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 38, 1090, Vienna, Austria
| |
Collapse
|
3
|
Wang Z, Teng D, Mao R, Hao Y, Yang N, Wang X, Wang J. A cleavable chimeric peptide with targeting and killing domains enhances LPS neutralization and antibacterial properties against multi-drug resistant E. coli. Commun Biol 2023; 6:1170. [PMID: 37973936 PMCID: PMC10654507 DOI: 10.1038/s42003-023-05528-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 10/31/2023] [Indexed: 11/19/2023] Open
Abstract
Pathogenic Escherichia coli is one of the most common causes of diarrhea diseases and its characteristic component of the outer membrane-lipopolysaccharide (LPS) is a major inducer of sepsis. Few drugs have been proven to kill bacteria and simultaneously neutralize LPS toxicity. Here, the chimeric peptides-R7, A7 and G7 were generated by connecting LBP14 (LPS-targeting domain) with L7 (killing domain) via different linkers to improve antibacterial and anti-inflammatory activities. Compared to parent LBP14-RKRR and L7, the antibacterial activity of R7 with a cleavable "RKRR" linker and the "LBP14-RKRR + L7" cocktail against Escherichia coli, Salmonella typhimurium and Staphylococcus aureus was increased by 2 ~ 4-fold. Both A7 and G7 with non-cleavable linkers almost lost antibacterial activity. The ability of R7 to neutralize LPS was markedly higher than that of LBP14-RKRR and L7. In vivo, R7 could be cleaved by furin in a time-dependent manner, and release L7 and LBP14-RKRR in serum. In vivo, R7 can enhance mouse survival more effectively than L7 and alleviate lung injuries by selective inhibition of the NF-κB signaling pathways and promoting higher IAP activity. It suggests that R7 may be promising dual-function candidates as antibacterial and anti-endotoxin agents.
Collapse
Affiliation(s)
- Zhenlong Wang
- Team of AMP & Alternatives to Antibiotics, Gene Engineering Laboratory, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, 100081, People's Republic of China
| | - Da Teng
- Team of AMP & Alternatives to Antibiotics, Gene Engineering Laboratory, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, 100081, People's Republic of China
| | - Ruoyu Mao
- Team of AMP & Alternatives to Antibiotics, Gene Engineering Laboratory, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, 100081, People's Republic of China
| | - Ya Hao
- Team of AMP & Alternatives to Antibiotics, Gene Engineering Laboratory, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, 100081, People's Republic of China
| | - Na Yang
- Team of AMP & Alternatives to Antibiotics, Gene Engineering Laboratory, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, 100081, People's Republic of China
| | - Xiumin Wang
- Team of AMP & Alternatives to Antibiotics, Gene Engineering Laboratory, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China.
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, 100081, People's Republic of China.
| | - Jianhua Wang
- Team of AMP & Alternatives to Antibiotics, Gene Engineering Laboratory, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China.
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, 100081, People's Republic of China.
| |
Collapse
|
4
|
Li R, Wu J, He F, Xu Q, Yin K, Li S, Li W, Wei A, Zhang L, Zhang XH, Zhang B. Rational design, synthesis, antifungal evaluation and docking studies of antifungal peptide CGA-N12 analogues based on the target CtKRE9. Bioorg Chem 2023; 132:106355. [PMID: 36669359 DOI: 10.1016/j.bioorg.2023.106355] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 11/02/2022] [Accepted: 01/08/2023] [Indexed: 01/12/2023]
Abstract
Candida tropicalis is a major non-albicans species that causes invasive candidiasis. CGA-N12, an anti-Candida peptide found by our group, disrupted cell wall architecture by inhibiting the activity of the protein killer-resistant 9 (KRE9), a β-1,6-glucan synthase specific to Candida spp. and plants. Herein, a set of CGA-N12 analogues were rationally designed based on the interaction networks between CGA-N12 and C. tropicalis KRE9 (CtKRE9). Seven CGA-N12 analogues with significantly improved antifungal activity against C. tropicalis were screened by reducing the docking energy of CGA-N12 and CtKRE9 and increasing the number of positive charges on CGA-N12 based on a stable three-dimensional model of CtKRE9. CGA-N12 and its analogues exhibited antifungal activity against C. tropicalis and its persist cells; they also inhibited biofilm formation and eradicated preformed biofilms. Compared with fluconazole, they displayed higher activities against the growth of persister cells and more effective preformed biofilm eradication. Among them, CGA-N12-0801, CGA-N12-0902 and CGA-N12-1002 displayed much higher activity and anti-proteinase digestion stability than CGA-N12. Specifically, CGA-N12-0801 was the optimal analogue, with a minimum inhibitory concentration of 3.46 μg/mL and a therapeutic index of 158.07. The results of electronic microscopy observations and KRE9 activity inhibition assays showed that CGA-N12 and its analogues killed C. tropicalis by disrupting the architecture of the cell wall and the integrity of the cell membrane. In conclusion, for the first time, we provide a simple and reliable method for the rational design of antimicrobial peptides and ideal candidates for treating Candida infections that not effectively eliminated by azole drugs.
Collapse
Affiliation(s)
- Ruifang Li
- College of Biological Engineering, Henan University of Technology, 450001 Zhengzhou, Henan, PR China; Key Laboratory of Functional Molecules for Biomedical Research, Henan University of Technology, 450001 Zhengzhou, Henan, PR China.
| | - Jiasha Wu
- College of Biological Engineering, Henan University of Technology, 450001 Zhengzhou, Henan, PR China; Key Laboratory of Functional Molecules for Biomedical Research, Henan University of Technology, 450001 Zhengzhou, Henan, PR China
| | - Fuyang He
- School of Artificial Intelligence and Big Data, Henan University of Technology, 450001 Zhengzhou, Henan, PR China
| | - Qingpeng Xu
- College of Information Science and Engineering, Henan University of Technology, 450001 Zhengzhou, Henan, PR China
| | - Kedong Yin
- College of Information Science and Engineering, Henan University of Technology, 450001 Zhengzhou, Henan, PR China
| | - Shang Li
- College of Biological Engineering, Henan University of Technology, 450001 Zhengzhou, Henan, PR China
| | - Weitong Li
- College of Biological Engineering, Henan University of Technology, 450001 Zhengzhou, Henan, PR China
| | - Ao Wei
- College of Biological Engineering, Henan University of Technology, 450001 Zhengzhou, Henan, PR China
| | - Lan Zhang
- College of Biological Engineering, Henan University of Technology, 450001 Zhengzhou, Henan, PR China; Key Laboratory of Functional Molecules for Biomedical Research, Henan University of Technology, 450001 Zhengzhou, Henan, PR China
| | - Xin-Hui Zhang
- College of Biological Engineering, Henan University of Technology, 450001 Zhengzhou, Henan, PR China; Key Laboratory of Functional Molecules for Biomedical Research, Henan University of Technology, 450001 Zhengzhou, Henan, PR China
| | - Beibei Zhang
- College of Biological Engineering, Henan University of Technology, 450001 Zhengzhou, Henan, PR China; Key Laboratory of Functional Molecules for Biomedical Research, Henan University of Technology, 450001 Zhengzhou, Henan, PR China.
| |
Collapse
|
5
|
Hering A, Jieu B, Jones A, Muttenthaler M. Approaches to Improve the Quantitation of Oxytocin in Human Serum by Mass Spectrometry. Front Chem 2022; 10:889154. [PMID: 35755255 PMCID: PMC9218718 DOI: 10.3389/fchem.2022.889154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/03/2022] [Indexed: 11/26/2022] Open
Abstract
The neuropeptide oxytocin (OT) regulates several peripheral and central functions and is a molecule of interest in psychiatric diseases such as autism spectrum disorder, schizophrenia, anxiety and depression. The study of OT in human serum samples is however hampered by inconsistent sample preparation and analysis as well as low endogenous blood concentration (1-10 pM). This results in varying reports on OT's blood levels and interpretation of OT's role in different (patho)physiological states. Quantitative mass spectrometry (MS) is a highly promising technology to address this problem but still requires large sample volumes to achieve adequate sensitivity and reliability for the quantitation of compounds at low concentrations. We therefore systematically evaluated sample preparation methods for MS to achieve a reliable sample preparation protocol with good peptide recovery, minimal matrix effects and good overall method efficiency in line with FDA guidelines for bioanalytic method development and validation. Additionally, we investigated a strategy to improve the ionization efficiency of OT by adding charged and/or hydrophobic moieties to OT to improve the lower limit of quantitation. Optimized sample preparation in combination with OT modification with a quaternary pyridinium ion improved the sensitivity of OT by ∼40-fold on a tandem triple quadrupole mass spectrometer (API4000 QTRAP), resulting in a lower limit of quantitation of 5 pM in water (linear range 5 pM - 1 mM) and 2 nM in human serum (linear range 2 nM - 1 mM) compared to 200 pM in water and 86 nM in serum with unmodified OT. This approach and protocol provide a solid foundation towards method development for OT quantitation using MS, which should be of high value for fundamental research as well as clinical monitoring of OT upon drug treatments.
Collapse
Affiliation(s)
- Anke Hering
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Beverly Jieu
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Alun Jones
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Markus Muttenthaler
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
- Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| |
Collapse
|
6
|
Kremsmayr T, Aljnabi A, Blanco-Canosa JB, Tran HNT, Emidio NB, Muttenthaler M. On the Utility of Chemical Strategies to Improve Peptide Gut Stability. J Med Chem 2022; 65:6191-6206. [PMID: 35420805 PMCID: PMC9059125 DOI: 10.1021/acs.jmedchem.2c00094] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
![]()
Inherent susceptibility
of peptides to enzymatic degradation in
the gastrointestinal tract is a key bottleneck in oral peptide drug
development. Here, we present a systematic analysis of (i) the gut
stability of disulfide-rich peptide scaffolds, orally administered
peptide therapeutics, and well-known neuropeptides and (ii) medicinal
chemistry strategies to improve peptide gut stability. Among a broad
range of studied peptides, cyclotides were the only scaffold class
to resist gastrointestinal degradation, even when grafted with non-native
sequences. Backbone cyclization, a frequently applied strategy, failed
to improve stability in intestinal fluid, but several site-specific
alterations proved efficient. This work furthermore highlights the
importance of standardized gut stability test conditions and suggests
defined protocols to facilitate cross-study comparison. Together,
our results provide a comparative overview and framework for the chemical
engineering of gut-stable peptides, which should be valuable for the
development of orally administered peptide therapeutics and molecular
probes targeting receptors within the gastrointestinal tract.
Collapse
Affiliation(s)
- Thomas Kremsmayr
- Faculty of Chemistry, Institute of Biological Chemistry, University of Vienna, Währinger Straße 38, Vienna 1090, Austria
| | - Aws Aljnabi
- Faculty of Chemistry, Institute of Biological Chemistry, University of Vienna, Währinger Straße 38, Vienna 1090, Austria
| | - Juan B Blanco-Canosa
- Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, Barcelona 08034, Spain
| | - Hue N T Tran
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Nayara Braga Emidio
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Markus Muttenthaler
- Faculty of Chemistry, Institute of Biological Chemistry, University of Vienna, Währinger Straße 38, Vienna 1090, Austria.,Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia
| |
Collapse
|