1
|
Nguyen ATN, Nguyen DTN, Koh HY, Toskov J, MacLean W, Xu A, Zhang D, Webb GI, May LT, Halls ML. The application of artificial intelligence to accelerate G protein-coupled receptor drug discovery. Br J Pharmacol 2024; 181:2371-2384. [PMID: 37161878 DOI: 10.1111/bph.16140] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 04/14/2023] [Accepted: 04/27/2023] [Indexed: 05/11/2023] Open
Abstract
The application of artificial intelligence (AI) approaches to drug discovery for G protein-coupled receptors (GPCRs) is a rapidly expanding area. Artificial intelligence can be used at multiple stages during the drug discovery process, from aiding our understanding of the fundamental actions of GPCRs to the discovery of new ligand-GPCR interactions or the prediction of clinical responses. Here, we provide an overview of the concepts behind artificial intelligence, including the subfields of machine learning and deep learning. We summarise the published applications of artificial intelligence to different stages of the GPCR drug discovery process. Finally, we reflect on the benefits and limitations of artificial intelligence and share our vision for the exciting potential for further development of applications to aid GPCR drug discovery. In addition to making the drug discovery process "faster, smarter and cheaper," we anticipate that the application of artificial intelligence will create exciting new opportunities for GPCR drug discovery. LINKED ARTICLES: This article is part of a themed issue Therapeutic Targeting of G Protein-Coupled Receptors: hot topics from the Australasian Society of Clinical and Experimental Pharmacologists and Toxicologists 2021 Virtual Annual Scientific Meeting. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.14/issuetoc.
Collapse
Affiliation(s)
- Anh T N Nguyen
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Diep T N Nguyen
- Department of Information Technology, Faculty of Engineering and Technology, Vietnam National University, Cau Giay, Hanoi, Vietnam
| | - Huan Yee Koh
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Monash Data Futures Institute and Department of Data Science and Artificial Intelligence, Monash University, Clayton, Victoria, Australia
| | - Jason Toskov
- Monash DeepNeuron, Monash University, Clayton, Victoria, Australia
| | - William MacLean
- Monash DeepNeuron, Monash University, Clayton, Victoria, Australia
| | - Andrew Xu
- Monash DeepNeuron, Monash University, Clayton, Victoria, Australia
| | - Daokun Zhang
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Monash Data Futures Institute and Department of Data Science and Artificial Intelligence, Monash University, Clayton, Victoria, Australia
| | - Geoffrey I Webb
- Monash Data Futures Institute and Department of Data Science and Artificial Intelligence, Monash University, Clayton, Victoria, Australia
| | - Lauren T May
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Michelle L Halls
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| |
Collapse
|
2
|
Heifetz A. Accelerating COVID-19 Drug Discovery with High-Performance Computing. Methods Mol Biol 2024; 2716:405-411. [PMID: 37702951 DOI: 10.1007/978-1-0716-3449-3_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
The recent COVID-19 pandemic has served as a timely reminder that the existing drug discovery is a laborious, expensive, and slow process. Never has there been such global demand for a therapeutic treatment to be identified as a matter of such urgency. Unfortunately, this is a scenario likely to repeat itself in future, so it is of interest to explore ways in which to accelerate drug discovery at pandemic speed. Computational methods naturally lend themselves to this because they can be performed rapidly if sufficient computational resources are available. Recently, high-performance computing (HPC) technologies have led to remarkable achievements in computational drug discovery and yielded a series of new platforms, algorithms, and workflows. The application of artificial intelligence (AI) and machine learning (ML) approaches is also a promising and relatively new avenue to revolutionize the drug design process and therefore reduce costs. In this review, I describe how molecular dynamics simulations (MD) were successfully integrated with ML and adapted to HPC to form a powerful tool to study inhibitors for four of the COVID-19 target proteins. The emphasis of this review is on the strategy that was used with an explanation of each of the steps in the accelerated drug discovery workflow. For specific technical details, the reader is directed to the relevant research publications.
Collapse
|
3
|
Akhunzada MJ, Yoon HJ, Deb I, Braka A, Wu S. Bell-Evans model and steered molecular dynamics in uncovering the dissociation kinetics of ligands targeting G-protein-coupled receptors. Sci Rep 2022; 12:15972. [PMID: 36153364 PMCID: PMC9509322 DOI: 10.1038/s41598-022-20065-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 09/08/2022] [Indexed: 11/10/2022] Open
Abstract
AbstractRecently, academic and industrial scientific communities involved in kinetics-based drug development have become immensely interested in predicting the drug target residence time. Screening drug candidates in terms of their computationally predicted residence times, which is a measure of drug efficacy in vivo, and simultaneously assessing computational binding affinities are becoming inevitable. Non-equilibrium molecular simulation approaches are proven to be useful in this purpose. Here, we have implemented an optimized approach of combining the data derived from steered molecular dynamics simulations and the Bell-Evans model to predict the absolute residence times of the antagonist ZMA241385 and agonist NECA that target the A2A adenosine receptor of the G-protein-coupled receptor (GPCR) protein family. We have predicted the absolute ligand residence times on the timescale of seconds. However, our predictions were many folds shorter than those determined experimentally. Additionally, we calculated the thermodynamics of ligand binding in terms of ligand binding energies and the per-residue contribution of the receptor. Subsequently, binding pocket hotspot residues that would be important for further computational mutagenesis studies were identified. In the experiment, similar sets of residues were found to be in significant contact with both ligands under study. Our results build a strong foundation for further improvement of our approach by rationalizing the kinetics of ligand unbinding with the thermodynamics of ligand binding.
Collapse
|
4
|
Egyed A, Kiss DJ, Keserű GM. The Impact of the Secondary Binding Pocket on the Pharmacology of Class A GPCRs. Front Pharmacol 2022; 13:847788. [PMID: 35355719 PMCID: PMC8959758 DOI: 10.3389/fphar.2022.847788] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 02/01/2022] [Indexed: 12/19/2022] Open
Abstract
G-protein coupled receptors (GPCRs) are considered important therapeutic targets due to their pathophysiological significance and pharmacological relevance. Class A receptors represent the largest group of GPCRs that gives the highest number of validated drug targets. Endogenous ligands bind to the orthosteric binding pocket (OBP) embedded in the intrahelical space of the receptor. During the last 10 years, however, it has been turned out that in many receptors there is secondary binding pocket (SBP) located in the extracellular vestibule that is much less conserved. In some cases, it serves as a stable allosteric site harbouring allosteric ligands that modulate the pharmacology of orthosteric binders. In other cases it is used by bitopic compounds occupying both the OBP and SBP. In these terms, SBP binding moieties might influence the pharmacology of the bitopic ligands. Together with others, our research group showed that SBP binders contribute significantly to the affinity, selectivity, functional activity, functional selectivity and binding kinetics of bitopic ligands. Based on these observations we developed a structure-based protocol for designing bitopic compounds with desired pharmacological profile.
Collapse
Affiliation(s)
| | | | - György M. Keserű
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Budapest, Hungary
| |
Collapse
|