1
|
Wang W, Yang C, Xia J, Tan Y, Peng X, Xiong W, Li N. Novel insights into the role of quercetin and kaempferol from Carthamus tinctorius L. in the management of nonalcoholic fatty liver disease via NR1H4-mediated pathways. Int Immunopharmacol 2024; 143:113035. [PMID: 39378656 DOI: 10.1016/j.intimp.2024.113035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 08/19/2024] [Accepted: 08/26/2024] [Indexed: 10/10/2024]
Abstract
This study investigates the novel therapeutic potential of quercetin and kaempferol, two bioactive compounds derived from Carthamus tinctorius L., in treating nonalcoholic fatty liver disease (NAFLD) by modulating the bile acid receptor NR1H4 (Nuclear Receptor Subfamily 1 Group H Member 4) and its associated metabolic pathways. A rat model of NAFLD was established, and RNA sequencing and proteomics were carefully employed to identify differential gene expressions associated with the disease. The active components of Carthamus tinctorius L. were screened, followed by the construction of a comprehensive network that maps the interactions between these components, NR1H4 and NAFLD-related pathways. Both in vitro (using HepG2 cells) and in vivo experiments were conducted to evaluate the effects on NR1H4 expression levels through Western blot and RT-qPCR analyses. Our findings identify NR1H4 as a pivotal target in NAFLD. Network pharmacology analysis indicates that quercetin and kaempferol play crucial roles in combating NAFLD, with in vitro and in vivo experiments confirming their ability to mitigate hepatocyte steatosis by enhancing NR1H4 expression. Notably, the protective effects of these compounds were inhibited by the NR1H4 antagonist guggulsterone, highlighting the importance of NR1H4 upregulation. This study demonstrates the novel therapeutic efficacy of quercetin and kaempferol from Carthamus tinctorius L. in treating NAFLD through NR1H4 upregulation. This mechanism contributes to the regulation of lipid metabolism, improvement of liver function, reduction of inflammation, and alleviation of oxidative stress, offering a promising direction for future NAFLD treatment strategies.
Collapse
Affiliation(s)
- Wenxiang Wang
- Chongqing Three Gorges Medical College, Chongqing 404120, China; Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing 404120, China
| | - Ce Yang
- Chongqing Three Gorges Medical College, Chongqing 404120, China; Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing 404120, China
| | - Jing Xia
- Chongqing Three Gorges Medical College, Chongqing 404120, China; Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing 404120, China
| | - Ying Tan
- Chongqing Three Gorges Medical College, Chongqing 404120, China; Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing 404120, China
| | - Xiaoyuan Peng
- Chongqing Three Gorges Medical College, Chongqing 404120, China; Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing 404120, China
| | - Wei Xiong
- Chongqing Three Gorges Medical College, Chongqing 404120, China; Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing 404120, China.
| | - Ning Li
- Chongqing Three Gorges Medical College, Chongqing 404120, China; Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing 404120, China.
| |
Collapse
|
2
|
Whitworth IT, Romero S, Kissi-Twum A, Knoener R, Scalf M, Sherer NM, Smith LM. Identification of Host Proteins Involved in Hepatitis B Virus Genome Packaging. J Proteome Res 2024; 23:4128-4138. [PMID: 39078123 PMCID: PMC11693245 DOI: 10.1021/acs.jproteome.4c00505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
A critical part of the hepatitis B virus (HBV) life cycle is the packaging of the pregenomic RNA (pgRNA) into nucleocapsids. While this process is known to involve several viral elements, much less is known about the identities and roles of host proteins in this process. To better understand the role of host proteins, we isolated pgRNA and characterized its protein interactome in cells expressing either packaging-competent or packaging-incompetent HBV genomes. We identified over 250 host proteins preferentially associated with pgRNA from the packaging-competent version of the virus. These included proteins already known to support capsid formation, enhance viral gene expression, catalyze nucleocapsid dephosphorylation, and bind to the viral genome, demonstrating the ability of the approach to effectively reveal functionally significant host-virus interactors. Three of these host proteins, AURKA, YTHDF2, and ATR, were selected for follow-up analysis. RNA immunoprecipitation qPCR (RIP-qPCR) confirmed pgRNA-protein association in cells, and siRNA knockdown of the proteins showed decreased encapsidation efficiency. This study provides a template for the use of comparative RNA-protein interactome analysis in conjunction with virus engineering to reveal functionally significant host-virus interactions.
Collapse
Affiliation(s)
- Isabella T Whitworth
- Department of Chemistry, University of Wisconsin-Madison College of Letters and Sciences, Madison, Wisconsin, 53706, United States
| | - Sofia Romero
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, 53705, United States
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin, 53706, United States
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, 53706, United States
| | - Abena Kissi-Twum
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, 53705, United States
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, 53706, United States
| | - Rachel Knoener
- Department of Chemistry, University of Wisconsin-Madison College of Letters and Sciences, Madison, Wisconsin, 53706, United States
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, 53705, United States
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin, 53706, United States
| | - Mark Scalf
- Department of Chemistry, University of Wisconsin-Madison College of Letters and Sciences, Madison, Wisconsin, 53706, United States
| | - Nathan M Sherer
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, 53705, United States
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin, 53706, United States
| | - Lloyd M Smith
- Department of Chemistry, University of Wisconsin-Madison College of Letters and Sciences, Madison, Wisconsin, 53706, United States
| |
Collapse
|
3
|
Whitworth IT, Knoener RA, Puray-Chavez M, Halfmann P, Romero S, Baddouh M, Scalf M, Kawaoka Y, Kutluay SB, Smith LM, Sherer NM. Defining Distinct RNA-Protein Interactomes of SARS-CoV-2 Genomic and Subgenomic RNAs. J Proteome Res 2024; 23:149-160. [PMID: 38043095 PMCID: PMC10804885 DOI: 10.1021/acs.jproteome.3c00506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/31/2023] [Accepted: 11/16/2023] [Indexed: 12/05/2023]
Abstract
Host RNA binding proteins recognize viral RNA and play key roles in virus replication and antiviral mechanisms. SARS-CoV-2 generates a series of tiered subgenomic RNAs (sgRNAs), each encoding distinct viral protein(s) that regulate different aspects of viral replication. Here, for the first time, we demonstrate the successful isolation of SARS-CoV-2 genomic RNA and three distinct sgRNAs (N, S, and ORF8) from a single population of infected cells and characterize their protein interactomes. Over 500 protein interactors (including 260 previously unknown) were identified as associated with one or more target RNA. These included protein interactors unique to a single RNA pool and others present in multiple pools, highlighting our ability to discriminate between distinct viral RNA interactomes despite high sequence similarity. Individual interactomes indicated viral associations with cell response pathways, including regulation of cytoplasmic ribonucleoprotein granules and posttranscriptional gene silencing. We tested the significance of three protein interactors in these pathways (APOBEC3F, PPP1CC, and MSI2) using siRNA knockdowns, with several knockdowns affecting viral gene expression, most consistently PPP1CC. This study describes a new technology for high-resolution studies of SARS-CoV-2 RNA regulation and reveals a wealth of new viral RNA-associated host factors of potential functional significance to infection.
Collapse
Affiliation(s)
- Isabella T Whitworth
- Department of Chemistry, University of Wisconsin-Madison College of Letters and Sciences, Madison, Wisconsin 53706, United States
| | - Rachel A Knoener
- Department of Chemistry, University of Wisconsin-Madison College of Letters and Sciences, Madison, Wisconsin 53706, United States
- McArdle Laboratory for Cancer Research and Carbone Cancer Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin 53705, United States
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Maritza Puray-Chavez
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Peter Halfmann
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin 53705, United States
| | - Sofia Romero
- McArdle Laboratory for Cancer Research and Carbone Cancer Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin 53705, United States
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - M'bark Baddouh
- McArdle Laboratory for Cancer Research and Carbone Cancer Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin 53705, United States
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Mark Scalf
- Department of Chemistry, University of Wisconsin-Madison College of Letters and Sciences, Madison, Wisconsin 53706, United States
| | - Yoshihiro Kawaoka
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin 53705, United States
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo 162-8655, Japan
- Pandemic Preparedness, Infection and Advanced Research Center (UTOPIA), University of Tokyo, Tokyo 162-8655, Japan
| | - Sebla B Kutluay
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Lloyd M Smith
- Department of Chemistry, University of Wisconsin-Madison College of Letters and Sciences, Madison, Wisconsin 53706, United States
| | - Nathan M Sherer
- McArdle Laboratory for Cancer Research and Carbone Cancer Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin 53705, United States
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
4
|
Whitworth IT, Knoener RA, Puray-Chavez M, Halfmann P, Romero S, Baddouh M, Scalf M, Kawaoka Y, Kutluay SB, Smith LM, Sherer NM. Defining distinct RNA-protein interactomes of SARS-CoV-2 genomic and subgenomic RNAs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.15.540806. [PMID: 37293069 PMCID: PMC10245570 DOI: 10.1101/2023.05.15.540806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Host RNA binding proteins recognize viral RNA and play key roles in virus replication and antiviral defense mechanisms. SARS-CoV-2 generates a series of tiered subgenomic RNAs (sgRNAs), each encoding distinct viral protein(s) that regulate different aspects of viral replication. Here, for the first time, we demonstrate the successful isolation of SARS-CoV-2 genomic RNA and three distinct sgRNAs (N, S, and ORF8) from a single population of infected cells and characterize their protein interactomes. Over 500 protein interactors (including 260 previously unknown) were identified as associated with one or more target RNA at either of two time points. These included protein interactors unique to a single RNA pool and others present in multiple pools, highlighting our ability to discriminate between distinct viral RNA interactomes despite high sequence similarity. The interactomes indicated viral associations with cell response pathways including regulation of cytoplasmic ribonucleoprotein granules and posttranscriptional gene silencing. We validated the significance of five protein interactors predicted to exhibit antiviral activity (APOBEC3F, TRIM71, PPP1CC, LIN28B, and MSI2) using siRNA knockdowns, with each knockdown yielding increases in viral production. This study describes new technology for studying SARS-CoV-2 and reveals a wealth of new viral RNA-associated host factors of potential functional significance to infection.
Collapse
Affiliation(s)
- Isabella T. Whitworth
- Department of Chemistry, University of Wisconsin-Madison College of Letters and Sciences, Madison, Wisconsin, 53706, United States
| | - Rachel A. Knoener
- Department of Chemistry, University of Wisconsin-Madison College of Letters and Sciences, Madison, Wisconsin, 53706, United States
- McArdle Laboratory for Cancer Research and Carbone Cancer Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, 53705, United States
- Institute for Molecular Virology, University of Wisconsin-Madison Office of the Vice Chancellor for Research and Graduate Education, Madison, Wisconsin, 53706, United States
| | - Maritza Puray-Chavez
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, 63110, United States
| | - Peter Halfmann
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin, 53705, United States
| | - Sofia Romero
- McArdle Laboratory for Cancer Research and Carbone Cancer Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, 53705, United States
- Institute for Molecular Virology, University of Wisconsin-Madison Office of the Vice Chancellor for Research and Graduate Education, Madison, Wisconsin, 53706, United States
| | - M’bark Baddouh
- McArdle Laboratory for Cancer Research and Carbone Cancer Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, 53705, United States
- Institute for Molecular Virology, University of Wisconsin-Madison Office of the Vice Chancellor for Research and Graduate Education, Madison, Wisconsin, 53706, United States
| | - Mark Scalf
- Department of Chemistry, University of Wisconsin-Madison College of Letters and Sciences, Madison, Wisconsin, 53706, United States
| | - Yoshihiro Kawaoka
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin, 53705, United States
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo 162-8655, Japan
- Pandemic Preparedness, Infection and Advanced Research Center (UTOPIA), University of Tokyo, Tokyo 162-8655, Japan
| | - Sebla B. Kutluay
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, 63110, United States
| | - Lloyd M. Smith
- Department of Chemistry, University of Wisconsin-Madison College of Letters and Sciences, Madison, Wisconsin, 53706, United States
| | - Nathan M. Sherer
- McArdle Laboratory for Cancer Research and Carbone Cancer Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, 53705, United States
- Institute for Molecular Virology, University of Wisconsin-Madison Office of the Vice Chancellor for Research and Graduate Education, Madison, Wisconsin, 53706, United States
| |
Collapse
|
5
|
Whitworth IT, Henke KB, Yang B, Scalf M, Frey BL, Jarrard DF, Smith LM. Elucidating the RNA-Protein Interactomes of Target RNAs in Tissue. Anal Chem 2023; 95:7087-7092. [PMID: 37093976 PMCID: PMC10234431 DOI: 10.1021/acs.analchem.2c05635] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
RNA-protein interactions are key to many aspects of cellular homeostasis and their identification is important to understanding cellular function. Multiple strategies have been developed for the RNA-centric characterization of RNA-protein complexes. However, these studies have all been done in immortalized cell lines that do not capture the complexity of heterogeneous tissue samples. Here, we develop hybridization purification of RNA-protein complexes followed by mass spectrometry (HyPR-MS) for use in tissue samples. We isolated both polyadenylated RNA and the specific long noncoding RNA MALAT1 and characterized their protein interactomes. These results demonstrate the feasibility of HyPR-MS in tissue for the multiplexed characterization of specific RNA-protein complexes.
Collapse
Affiliation(s)
- Isabella T Whitworth
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Katherine B Henke
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Bing Yang
- Department of Urology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin 53705, United States
| | - Mark Scalf
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Brian L Frey
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - David F Jarrard
- Department of Urology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin 53705, United States
- Carbone Comprehensive Cancer Center, University of Wisconsin, Madison, Wisconsin 53705, United States
- Molecular and Environmental Toxicology Program, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Lloyd M Smith
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, United States
| |
Collapse
|
6
|
Spiniello M, Scalf M, Casamassimi A, Abbondanza C, Smith LM. Towards an Ideal In Cell Hybridization-Based Strategy to Discover Protein Interactomes of Selected RNA Molecules. Int J Mol Sci 2022; 23:ijms23020942. [PMID: 35055128 PMCID: PMC8779001 DOI: 10.3390/ijms23020942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 02/04/2023] Open
Abstract
RNA-binding proteins are crucial to the function of coding and non-coding RNAs. The disruption of RNA–protein interactions is involved in many different pathological states. Several computational and experimental strategies have been developed to identify protein binders of selected RNA molecules. Amongst these, ‘in cell’ hybridization methods represent the gold standard in the field because they are designed to reveal the proteins bound to specific RNAs in a cellular context. Here, we compare the technical features of different ‘in cell’ hybridization approaches with a focus on their advantages, limitations, and current and potential future applications.
Collapse
Affiliation(s)
- Michele Spiniello
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy;
- Division of Immuno-Hematology and Transfusion Medicine, Cardarelli Hospital, 80131 Naples, Italy
- Correspondence: (M.S.); (A.C.)
| | - Mark Scalf
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; (M.S.); (L.M.S.)
| | - Amelia Casamassimi
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy;
- Correspondence: (M.S.); (A.C.)
| | - Ciro Abbondanza
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy;
| | - Lloyd M. Smith
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; (M.S.); (L.M.S.)
| |
Collapse
|