1
|
Schuster-Little N, McCabe M, Nenninger K, Safavi-Sohi R, Whelan RJ, Hilliard TS. Generational Diet-Induced Obesity Remodels the Omental Adipose Proteome in Female Mice. Nutrients 2024; 16:3086. [PMID: 39339686 PMCID: PMC11435095 DOI: 10.3390/nu16183086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/16/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
Obesity, a complex condition that involves genetic, environmental, and behavioral factors, is a non-infectious pandemic that affects over 650 million adults worldwide with a rapidly growing prevalence. A major contributor is the consumption of high-fat diets, an increasingly common feature of modern diets. Maternal obesity results in an increased risk of offspring developing obesity and related health problems; however, the impact of maternal diet on the adipose tissue composition of offspring has not been evaluated. Here, we designed a generational diet-induced obesity study in female C57BL/6 mice that included maternal cohorts and their female offspring fed either a control diet (10% fat) or a high-fat diet (45% fat) and examined the visceral adipose proteome. Solubilizing proteins from adipose tissue is challenging due to the need for high concentrations of detergents; however, the use of a detergent-compatible sample preparation strategy based on suspension trapping (S-Trap) enabled label-free quantitative bottom-up analysis of the adipose proteome. We identified differentially expressed proteins related to lipid metabolism, inflammatory disease, immune response, and cancer, providing valuable molecular-level insight into how maternal obesity impacts the health of offspring. Data are available via ProteomeXchange with the identifier PXD042092.
Collapse
Affiliation(s)
- Naviya Schuster-Little
- Department of Chemistry, University of Kansas, Lawrence, KS 66045, USA; (N.S.-L.); (R.J.W.)
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, KS 66047, USA
| | - Morgan McCabe
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA; (M.M.); (K.N.); (R.S.-S.)
| | - Kayla Nenninger
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA; (M.M.); (K.N.); (R.S.-S.)
| | - Reihaneh Safavi-Sohi
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA; (M.M.); (K.N.); (R.S.-S.)
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46617, USA
- Department of Chemistry and Biochemistry, Seton Hall University, South Orange, NJ 07079, USA
| | - Rebecca J. Whelan
- Department of Chemistry, University of Kansas, Lawrence, KS 66045, USA; (N.S.-L.); (R.J.W.)
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, KS 66047, USA
| | - Tyvette S. Hilliard
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA; (M.M.); (K.N.); (R.S.-S.)
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46617, USA
| |
Collapse
|
2
|
Jazwinska DE, Cho Y, Zervantonakis IK. Enhancing PKA-dependent mesothelial barrier integrity reduces ovarian cancer transmesothelial migration via inhibition of contractility. iScience 2024; 27:109950. [PMID: 38812549 PMCID: PMC11134878 DOI: 10.1016/j.isci.2024.109950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/25/2024] [Accepted: 05/07/2024] [Indexed: 05/31/2024] Open
Abstract
Cancer-mesothelial cell interactions are critical for multiple solid tumors to colonize the surface of peritoneal organs. Understanding mechanisms of mesothelial barrier dysfunction that impair its protective function is critical for discovering mesothelial-targeted therapies to combat metastatic spread. Here, we utilized a live cell imaging-based assay to elucidate the dynamics of ovarian cancer spheroid transmesothelial migration and mesothelial-generated mechanical forces. Treatment of mesothelial cells with the adenylyl cyclase agonist forskolin strengthens cell-cell junctions, reduces actomyosin fibers, contractility-driven matrix displacements, and cancer spheroid transmigration in a protein kinase A (PKA)-dependent mechanism. We also show that inhibition of the cytoskeletal regulator Rho-associated kinase in mesothelial cells phenocopies the anti-metastatic effects of forskolin. Conversely, upregulation of contractility in mesothelial cells disrupts cell-cell junctions and increases the clearance rates of ovarian cancer spheroids. Our findings demonstrate the critical role of mesothelial cell contractility and mesothelial barrier integrity in regulating metastatic dissemination within the peritoneal microenvironment.
Collapse
Affiliation(s)
- Dorota E. Jazwinska
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Youngbin Cho
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Ioannis K. Zervantonakis
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15232, USA
| |
Collapse
|
3
|
Micek HM, Yang N, Dutta M, Rosenstock L, Ma Y, Hielsberg C, McCord M, Notbohm J, McGregor S, Kreeger PK. The role of Piezo1 mechanotransduction in high-grade serous ovarian cancer: Insights from an in vitro model of collective detachment. SCIENCE ADVANCES 2024; 10:eadl4463. [PMID: 38669327 PMCID: PMC11051664 DOI: 10.1126/sciadv.adl4463] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 03/22/2024] [Indexed: 04/28/2024]
Abstract
Slowing peritoneal spread in high-grade serous ovarian cancer (HGSOC) would improve patient prognosis and quality of life. HGSOC spreads when single cells and spheroids detach, float through the peritoneal fluid and take over new sites, with spheroids thought to be more aggressive than single cells. Using our in vitro model of spheroid collective detachment, we determine that increased substrate stiffness led to the detachment of more spheroids. We identified a mechanism where Piezo1 activity increased MMP-1/MMP-10, decreased collagen I and fibronectin, and increased spheroid detachment. Piezo1 expression was confirmed in omental masses from patients with stage III/IV HGSOC. Using OV90 and CRISPR-modified PIEZO1-/- OV90 in a mouse xenograft model, we determined that while both genotypes efficiently took over the omentum, loss of Piezo1 significantly decreased ascitic volume, tumor spheroids in the ascites, and the number of macroscopic tumors in the mesentery. These results support that slowing collective detachment may benefit patients and identify Piezo1 as a potential therapeutic target.
Collapse
Affiliation(s)
- Hannah M. Micek
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Ning Yang
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Mayuri Dutta
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Lauren Rosenstock
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Yicheng Ma
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Caitlin Hielsberg
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Molly McCord
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI 53705, USA
- Biophysics Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Jacob Notbohm
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI 53705, USA
- Biophysics Program, University of Wisconsin-Madison, Madison, WI 53705, USA
- University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Stephanie McGregor
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Pamela K. Kreeger
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| |
Collapse
|
4
|
Harper EI, Siroky MD, Hilliard TS, Dominique GM, Hammond C, Liu Y, Yang J, Hubble VB, Walsh DJ, Melander RJ, Melander C, Ravosa MJ, Stack MS. Advanced Glycation End Products as a Potential Target for Restructuring the Ovarian Cancer Microenvironment: A Pilot Study. Int J Mol Sci 2023; 24:9804. [PMID: 37372952 PMCID: PMC10298212 DOI: 10.3390/ijms24129804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/25/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Ovarian cancer is the sixth leading cause of cancer-related death in women, and both occurrence and mortality are increased in women over the age of 60. There are documented age-related changes in the ovarian cancer microenvironment that have been shown to create a permissive metastatic niche, including the formation of advanced glycation end products, or AGEs, that form crosslinks between collagen molecules. Small molecules that disrupt AGEs, known as AGE breakers, have been examined in other diseases, but their efficacy in ovarian cancer has not been evaluated. The goal of this pilot study is to target age-related changes in the tumor microenvironment with the long-term aim of improving response to therapy in older patients. Here, we show that AGE breakers have the potential to change the omental collagen structure and modulate the peritoneal immune landscape, suggesting a potential use for AGE breakers in the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Elizabeth I. Harper
- Integrated Biomedical Sciences Graduate Program, University of Notre Dame, Notre Dame, IN 46556, USA
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46617, USA
| | - Michael D. Siroky
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46617, USA
| | - Tyvette S. Hilliard
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46617, USA
| | - Gena M. Dominique
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46617, USA
| | - Catherine Hammond
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46617, USA
| | - Yueying Liu
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46617, USA
| | - Jing Yang
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46617, USA
| | - Veronica B. Hubble
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Danica J. Walsh
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Roberta J. Melander
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Christian Melander
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Matthew J. Ravosa
- Center for Functional Anatomy and Evolution, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - M. Sharon Stack
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46617, USA
| |
Collapse
|