1
|
Andrade FRS, da Silva EL, Marinho AD, Oliveira ACX, Sánchez-Porras D, Bermejo-Casares F, Montenegro RC, Carriel V, Monteiro HSA, Jorge RJB. A new 3D model of L929 fibroblasts microtissues uncovers the effects of Bothrops erythromelas venom and its antivenom. Arch Toxicol 2024; 98:3503-3512. [PMID: 39009783 DOI: 10.1007/s00204-024-03824-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/04/2024] [Indexed: 07/17/2024]
Abstract
In Brazil, around 80% of snakebites are caused by snakes of the genus Bothrops. A three-dimensional culture model was standardized and used to perform treatments with Bothrops erythromelas venom (BeV) and its antivenom (AV). The MRC-5 and L929 cell lines were cultured at increasing cell densities. Morphometric parameters were evaluated through images obtained from an inverted microscope: solidity, circularity, and Feret diameter. L929 microtissues (MT) showed better morphometric data, and thus they were used for further analysis. MT viability was assessed using the acridine orange and ethidium bromide staining method, which showed viable cells in the MT on days 5, 7, and 10 of cultivation. Histochemical and histological analyses were performed, including hematoxylin/eosin staining, which showed a good structure of the spheroids. Alcian blue staining revealed the presence of acid proteoglycans. Immunohistochemical analysis with ki-67 showed different patterns of cell proliferation. The MT were also subjected to pharmacological tests using the BeV, in the presence or absence of its AV. The results showed that the venom was not cytotoxic, but it caused morphological changes. The MT showed cell detachment, losing their structure. The antivenom was able to partially prevent the venom activities.
Collapse
Affiliation(s)
- F R S Andrade
- Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, Coronel Nunes de Melo St, 1127, Fortaleza, CE, 60.430-275, Brazil.
- Drug Research and Development Center (NPDM), Federal University of Ceará, Coronel Nunes de Melo St, 1000, Fortaleza, CE, 60.430-275, Brazil.
| | - E L da Silva
- Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, Coronel Nunes de Melo St, 1127, Fortaleza, CE, 60.430-275, Brazil
- Drug Research and Development Center (NPDM), Federal University of Ceará, Coronel Nunes de Melo St, 1000, Fortaleza, CE, 60.430-275, Brazil
| | - A D Marinho
- Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, Coronel Nunes de Melo St, 1127, Fortaleza, CE, 60.430-275, Brazil
- Drug Research and Development Center (NPDM), Federal University of Ceará, Coronel Nunes de Melo St, 1000, Fortaleza, CE, 60.430-275, Brazil
| | - A C X Oliveira
- Drug Research and Development Center (NPDM), Federal University of Ceará, Coronel Nunes de Melo St, 1000, Fortaleza, CE, 60.430-275, Brazil
- Department of Morphology, School of Medicine, Postgraduate Program in Morphological Science, Federal University of Ceará, Delmiro de Farias St., Fortaleza, CE, 60.430-170, Brazil
| | - D Sánchez-Porras
- Department of Histology (Tissue Engineering Group), Faculty of Medicine, University of Granada, and Instituto de Investigación Biosanitaria, Ibs.GRANADA, Granada, Spain
| | - F Bermejo-Casares
- Department of Histology (Tissue Engineering Group), Faculty of Medicine, University of Granada, and Instituto de Investigación Biosanitaria, Ibs.GRANADA, Granada, Spain
| | - R C Montenegro
- Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, Coronel Nunes de Melo St, 1127, Fortaleza, CE, 60.430-275, Brazil
- Drug Research and Development Center (NPDM), Federal University of Ceará, Coronel Nunes de Melo St, 1000, Fortaleza, CE, 60.430-275, Brazil
| | - V Carriel
- Department of Histology (Tissue Engineering Group), Faculty of Medicine, University of Granada, and Instituto de Investigación Biosanitaria, Ibs.GRANADA, Granada, Spain
| | - H S A Monteiro
- Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, Coronel Nunes de Melo St, 1127, Fortaleza, CE, 60.430-275, Brazil
- Drug Research and Development Center (NPDM), Federal University of Ceará, Coronel Nunes de Melo St, 1000, Fortaleza, CE, 60.430-275, Brazil
| | - R J B Jorge
- Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, Coronel Nunes de Melo St, 1127, Fortaleza, CE, 60.430-275, Brazil
- Drug Research and Development Center (NPDM), Federal University of Ceará, Coronel Nunes de Melo St, 1000, Fortaleza, CE, 60.430-275, Brazil
- Department of Morphology, School of Medicine, Postgraduate Program in Morphological Science, Federal University of Ceará, Delmiro de Farias St., Fortaleza, CE, 60.430-170, Brazil
| |
Collapse
|
2
|
Ávila-Fernández P, Etayo-Escanilla M, Sánchez-Porras D, Blanco-Elices C, Campos F, Carriel V, García-García ÓD, Chato-Astrain J. A Novel In Vitro Pathological Model for Studying Neural Invasion in Non-Melanoma Skin Cancer. Gels 2024; 10:252. [PMID: 38667671 PMCID: PMC11049316 DOI: 10.3390/gels10040252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/26/2024] [Accepted: 04/02/2024] [Indexed: 04/28/2024] Open
Abstract
Neural Invasion (NI) is a key pathological feature of cancer in the colonization of distant tissues, and its underlying biological mechanisms are still scarcely known. The complex interactions between nerve and tumor cells, along with the stroma, make it difficult to reproduce this pathology in effective study models, which in turn has limited the understanding of NI pathogenesis. In this study, we have designed a three-dimensional model of NI squamous cell carcinoma combining human epidermoid carcinoma cells (hECCs) with a complete peripheral nerve segment encapsulated in a fibrine-agarose hydrogel. We recreated two vital processes of NI: a pre-invasive NI model in which hECCs were seeded on the top of the nerve-enriched stroma, and an invasive NI model in which cancer cells were immersed with the nerve in the hydrogel. Histological, histochemical and immunohistochemical analyses were performed to validate the model. Results showed that the integration of fibrin-agarose advanced hydrogel with a complete nerve structure and hECCs successfully generated an environment in which tumor cells and nerve components coexisted. Moreover, this model correctly preserved components of the neural extracellular matrix as well as allowing the proliferation and migration of cells embedded in hydrogel. All these results suggest the suitability of the model for the study of the mechanisms underlaying NI.
Collapse
Affiliation(s)
- Paula Ávila-Fernández
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, University of Granada, 18016 Granada, Spain; (P.Á.-F.); (M.E.-E.); (D.S.-P.); (C.B.-E.); (F.C.); (J.C.-A.)
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012 Granada, Spain
- Doctoral Program in Biomedicine, University of Granada, 18071 Granada, Spain
| | - Miguel Etayo-Escanilla
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, University of Granada, 18016 Granada, Spain; (P.Á.-F.); (M.E.-E.); (D.S.-P.); (C.B.-E.); (F.C.); (J.C.-A.)
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012 Granada, Spain
| | - David Sánchez-Porras
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, University of Granada, 18016 Granada, Spain; (P.Á.-F.); (M.E.-E.); (D.S.-P.); (C.B.-E.); (F.C.); (J.C.-A.)
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012 Granada, Spain
| | - Cristina Blanco-Elices
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, University of Granada, 18016 Granada, Spain; (P.Á.-F.); (M.E.-E.); (D.S.-P.); (C.B.-E.); (F.C.); (J.C.-A.)
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012 Granada, Spain
| | - Fernando Campos
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, University of Granada, 18016 Granada, Spain; (P.Á.-F.); (M.E.-E.); (D.S.-P.); (C.B.-E.); (F.C.); (J.C.-A.)
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012 Granada, Spain
| | - Víctor Carriel
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, University of Granada, 18016 Granada, Spain; (P.Á.-F.); (M.E.-E.); (D.S.-P.); (C.B.-E.); (F.C.); (J.C.-A.)
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012 Granada, Spain
| | - Óscar Darío García-García
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, University of Granada, 18016 Granada, Spain; (P.Á.-F.); (M.E.-E.); (D.S.-P.); (C.B.-E.); (F.C.); (J.C.-A.)
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012 Granada, Spain
| | - Jesús Chato-Astrain
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, University of Granada, 18016 Granada, Spain; (P.Á.-F.); (M.E.-E.); (D.S.-P.); (C.B.-E.); (F.C.); (J.C.-A.)
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012 Granada, Spain
| |
Collapse
|
3
|
Chato-Astrain J, Roda O, Carriel V, Hita-Contreras F, Sánchez-Montesinos I, Alaminos M, Hernández-Cortés P. Histological characterization of the human scapholunate ligament. Microsc Res Tech 2024; 87:257-271. [PMID: 37767790 DOI: 10.1002/jemt.24428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023]
Abstract
The scapholunate interosseous ligament (SLIL) plays a fundamental role in stabilizing the wrist bones, and its disruption is a frequent cause of wrist arthrosis and disfunction. Traditionally, this structure is considered to be a variety of fibrocartilaginous tissue and consists of three regions: dorsal, membranous and palmar. Despite its functional relevance, the exact composition of the human SLIL is not well understood. In the present work, we have analyzed the human SLIL and control tissues from the human hand using an array of histological, histochemical and immunohistochemical methods to characterize each region of this structure. Results reveal that the SLIL is heterogeneous, and each region can be subdivided in two zones that are histologically different to the other zones. Analysis of collagen and elastic fibers, and several proteoglycans, glycoproteins and glycosaminoglycans confirmed that the different regions can be subdivided in two zones that have their own structure and composition. In general, all parts of the SLIL resemble the histological structure of the control articular cartilage, especially the first part of the membranous region (zone M1). Cells showing a chondrocyte-like phenotype as determined by S100 were more abundant in M1, whereas the zone containing more CD73-positive stem cells was D2. These results confirm the heterogeneity of the human SLIL and could contribute to explain why certain zones of this structure are more prone to structural damage and why other zones have specific regeneration potential. RESEARCH HIGHLIGHTS: Application of an array of histological analysis methods allowed us to demonstrate that the human scapholunate ligament is heterogeneous and consists of at least six different regions sharing similarities with the human cartilage, ligament and other anatomical structures.
Collapse
Affiliation(s)
- Jesús Chato-Astrain
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Olga Roda
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, Spain
| | - Víctor Carriel
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Fidel Hita-Contreras
- Department of Health Sciences, Faculty of Health Sciences, University of Jaén, Jaén, Spain
| | - Indalecio Sánchez-Montesinos
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, Spain
| | - Miguel Alaminos
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Pedro Hernández-Cortés
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
- Department of Surgery and Surgical Specialties, Faculty of Medicine, University of Granada, Granada, Spain
- Division of Traumatology and Orthopedic Surgery, San Cecilio University Hospital, Granada, Spain
| |
Collapse
|
4
|
Sánchez-Porras D, Durand-Herrera D, Carmona R, Blanco-Elices C, Garzón I, Pozzobon M, San Martín S, Alaminos M, García-García ÓD, Chato-Astrain J, Carriel V. Expression of Basement Membrane Molecules by Wharton Jelly Stem Cells (WJSC) in Full-Term Human Umbilical Cords, Cell Cultures and Microtissues. Cells 2023; 12:cells12040629. [PMID: 36831296 PMCID: PMC9954414 DOI: 10.3390/cells12040629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 02/17/2023] Open
Abstract
Wharton's jelly stem cells (WJSC) from the human umbilical cord (UC) are one of the most promising mesenchymal stem cells (MSC) in tissue engineering (TE) and advanced therapies. The cell niche is a key element for both, MSC and fully differentiated tissues, to preserve their unique features. The basement membrane (BM) is an essential structure during embryonic development and in adult tissues. Epithelial BMs are well-known, but similar structures are present in other histological structures, such as in peripheral nerve fibers, myocytes or chondrocytes. Previous studies suggest the expression of some BM molecules within the Wharton's Jelly (WJ) of UC, but the distribution pattern and full expression profile of these molecules have not been yet elucidated. In this sense, the aim of this histological study was to evaluate the expression of main BM molecules within the WJ, cultured WJSC and during WJSC microtissue (WJSC-MT) formation process. Results confirmed the presence of a pericellular matrix composed by the main BM molecules-collagens (IV, VII), HSPG2, agrin, laminin and nidogen-around the WJSC within UC. Additionally, ex vivo studies demonstrated the synthesis of these BM molecules, except agrin, especially during WJSC-MT formation process. The WJSC capability to synthesize main BM molecules could offer new alternatives for the generation of biomimetic-engineered substitutes where these molecules are particularly needed.
Collapse
Affiliation(s)
- David Sánchez-Porras
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, Universidad de Granada, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
- Doctoral Program in Biomedicine, Doctoral School, Universidad de Granada, 18016 Granada, Spain
| | - Daniel Durand-Herrera
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, Universidad de Granada, 18016 Granada, Spain
- Facultad de Odontología, Universidad Michoacana de San Nicolás de Hidalgo (UMSNH), Morelia 58010, Mexico
| | - Ramón Carmona
- Department of Cell Biology, Faculty of Sciences, Universidad de Granada, 18071 Granada, Spain
| | - Cristina Blanco-Elices
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, Universidad de Granada, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
| | - Ingrid Garzón
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, Universidad de Granada, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
| | - Michela Pozzobon
- Department of Women and Children’s Health, University of Padova, 35129 Padova, Italy
- Corso Stati Uniti 4, Institute of Pediatric Research Città della Speranza, 35127 Padova, Italy
| | - Sebastián San Martín
- Centro de Investigaciones Biomédicas, Escuela de Medicina, Facultad de Medicina, Universidad de Valparaíso, Valparaíso 2520000, Chile
| | - Miguel Alaminos
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, Universidad de Granada, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
| | - Óscar Darío García-García
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, Universidad de Granada, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
- Correspondence: (Ó.D.G.-G.); (J.C.-A.)
| | - Jesús Chato-Astrain
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, Universidad de Granada, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
- Correspondence: (Ó.D.G.-G.); (J.C.-A.)
| | - Víctor Carriel
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, Universidad de Granada, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
| |
Collapse
|