1
|
Tierno IS, Agarwal M, Matisioudis N, Chandrakumar S, Ghosh K. Stiffness Measurement of Retinal Capillaries and Subendothelial Matrix using Atomic Force Microscopy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.28.582372. [PMID: 38464329 PMCID: PMC10925338 DOI: 10.1101/2024.02.28.582372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Retinal capillary degeneration is a clinical hallmark of the early stages of diabetic retinopathy (DR). Our recent studies have revealed that diabetes-induced increase in retinal capillary stiffness plays a crucial and previously unrecognized causal role in inflammation-mediated degeneration of retinal capillaries. Retinal capillary stiffening results from overexpression of lysyl oxidase, an enzyme that crosslinks and stiffens the subendothelial matrix. Since tackling DR at the early stage is expected to prevent or slow down DR progression and associated vision loss, subendothelial matrix and capillary stiffness represent relevant and novel therapeutic targets for early DR management. Further, direct measurement of retinal capillary stiffness can serve as a crucial preclinical validation step for the development of new imaging techniques for non-invasive assessment of retinal capillary stiffness in animal and human subjects. With this view in mind, we here provide a detailed protocol for the isolation and stiffness measurement of mouse retinal capillaries and retinal subendothelial matrix using atomic force microscopy.
Collapse
Affiliation(s)
- Irene Santiago Tierno
- Department of Ophthalmology, University of California, Los Angeles, CA, USA
- Doheny Eye Institute, Pasadena, CA, USA
- Molecular, Cellular, and Integrative Physiology Interdepartmental PhD Program, University of California, Los Angeles, CA, USA
| | - Mahesh Agarwal
- Department of Ophthalmology, University of California, Los Angeles, CA, USA
- Doheny Eye Institute, Pasadena, CA, USA
| | | | - Sathishkumar Chandrakumar
- Department of Ophthalmology, University of California, Los Angeles, CA, USA
- Doheny Eye Institute, Pasadena, CA, USA
| | - Kaustabh Ghosh
- Department of Ophthalmology, University of California, Los Angeles, CA, USA
- Doheny Eye Institute, Pasadena, CA, USA
- Molecular, Cellular, and Integrative Physiology Interdepartmental PhD Program, University of California, Los Angeles, CA, USA
| |
Collapse
|
2
|
Chandrakumar S, Santiago Tierno I, Agarwal M, Lessieur EM, Du Y, Tang J, Kiser J, Yang X, Rodriguez A, Kern TS, Ghosh K. Mechanical Regulation of Retinal Vascular Inflammation and Degeneration in Diabetes. Diabetes 2024; 73:280-291. [PMID: 37986627 PMCID: PMC10796303 DOI: 10.2337/db23-0584] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/06/2023] [Indexed: 11/22/2023]
Abstract
Vascular inflammation is known to cause degeneration of retinal capillaries in early diabetic retinopathy (DR), a major microvascular complication of diabetes. Past studies investigating these diabetes-induced retinal vascular abnormalities have focused primarily on the role of molecular or biochemical cues. Here we show that retinal vascular inflammation and degeneration in diabetes are also mechanically regulated by the increase in retinal vascular stiffness caused by overexpression of the collagen-cross-linking enzyme lysyl oxidase (LOX). Treatment of diabetic mice with LOX inhibitor β-aminopropionitrile (BAPN) prevented the increase in retinal capillary stiffness, vascular intracellular adhesion molecule-1 overexpression, and leukostasis. Consistent with these anti-inflammatory effects, BAPN treatment of diabetic mice blocked the upregulation of proapoptotic caspase-3 in retinal vessels, which concomitantly reduced retinal capillary degeneration, pericyte ghost formation, and the diabetes-induced loss of contrast sensitivity in these mice. Finally, our in vitro studies indicate that retinal capillary stiffening is sufficient to increase the adhesiveness and neutrophil elastase-induced death of retinal endothelial cells. By uncovering a link between LOX-dependent capillary stiffening and the development of retinal vascular and functional defects in diabetes, these findings offer a new insight into DR pathogenesis that has important translational potential. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Sathishkumar Chandrakumar
- Department of Ophthalmology, University of California, Los Angeles, Los Angeles, CA
- Doheny Eye Institute, Pasadena, CA
| | - Irene Santiago Tierno
- Department of Ophthalmology, University of California, Los Angeles, Los Angeles, CA
- Doheny Eye Institute, Pasadena, CA
- Molecular, Cellular, and Integrative Physiology Interdepartmental PhD Program, University of California, Los Angeles, Los Angeles, CA
| | - Mahesh Agarwal
- Department of Ophthalmology, University of California, Los Angeles, Los Angeles, CA
- Doheny Eye Institute, Pasadena, CA
| | - Emma M. Lessieur
- Department of Ophthalmology, Center for Translational Vision Research, University of California, Irvine, Irvine, CA
- Gavin Herbert Eye Institute, University of California, Irvine, CA
| | - Yunpeng Du
- Department of Ophthalmology, Center for Translational Vision Research, University of California, Irvine, Irvine, CA
- Gavin Herbert Eye Institute, University of California, Irvine, CA
| | - Jie Tang
- Department of Ophthalmology and Visual Science, Case Western Reserve University, Cleveland, OH
| | - Jianying Kiser
- Department of Ophthalmology, Center for Translational Vision Research, University of California, Irvine, Irvine, CA
- Gavin Herbert Eye Institute, University of California, Irvine, CA
| | - Xiao Yang
- Department of Bioengineering, University of California, Riverside, Riverside, CA
| | | | - Timothy S. Kern
- Department of Ophthalmology, Center for Translational Vision Research, University of California, Irvine, Irvine, CA
- Gavin Herbert Eye Institute, University of California, Irvine, CA
| | - Kaustabh Ghosh
- Department of Ophthalmology, University of California, Los Angeles, Los Angeles, CA
- Doheny Eye Institute, Pasadena, CA
- Molecular, Cellular, and Integrative Physiology Interdepartmental PhD Program, University of California, Los Angeles, Los Angeles, CA
| |
Collapse
|