1
|
Malik S, Sureka N, Ahuja S, Aden D, Zaheer S, Zaheer S. Tumor-associated macrophages: A sentinel of innate immune system in tumor microenvironment gone haywire. Cell Biol Int 2024; 48:1406-1449. [PMID: 39054741 DOI: 10.1002/cbin.12226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 06/10/2024] [Accepted: 07/08/2024] [Indexed: 07/27/2024]
Abstract
The tumor microenvironment (TME) is a critical determinant in the initiation, progression, and treatment outcomes of various cancers. Comprising of cancer-associated fibroblasts (CAF), immune cells, blood vessels, and signaling molecules, the TME is often likened to the soil supporting the seed (tumor). Among its constituents, tumor-associated macrophages (TAMs) play a pivotal role, exhibiting a dual nature as both promoters and inhibitors of tumor growth. This review explores the intricate relationship between TAMs and the TME, emphasizing their diverse functions, from phagocytosis and tissue repair to modulating immune responses. The plasticity of TAMs is highlighted, showcasing their ability to adopt either protumorigenic or anti-tumorigenic phenotypes based on environmental cues. In the context of cancer, TAMs' pro-tumorigenic activities include promoting angiogenesis, inhibiting immune responses, and fostering metastasis. The manuscript delves into therapeutic strategies targeting TAMs, emphasizing the challenges faced in depleting or inhibiting TAMs due to their multifaceted roles. The focus shifts towards reprogramming TAMs to an anti-tumorigenic M1-like phenotype, exploring interventions such as interferons, immune checkpoint inhibitors, and small molecule modulators. Noteworthy advancements include the use of CSF1R inhibitors, CD40 agonists, and CD47 blockade, demonstrating promising results in preclinical and clinical settings. A significant section is dedicated to Chimeric Antigen Receptor (CAR) technology in macrophages (CAR-M cells). While CAR-T cells have shown success in hematological malignancies, their efficacy in solid tumors has been limited. CAR-M cells, engineered to infiltrate solid tumors, are presented as a potential breakthrough, with a focus on their development, challenges, and promising outcomes. The manuscript concludes with the exploration of third-generation CAR-M technology, offering insight into in-vivo reprogramming and nonviral vector approaches. In conclusion, understanding the complex and dynamic role of TAMs in cancer is crucial for developing effective therapeutic strategies. While early-stage TAM-targeted therapies show promise, further extensive research and larger clinical trials are warranted to optimize their targeting and improve overall cancer treatment outcomes.
Collapse
Affiliation(s)
- Shaivy Malik
- Department of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, New Delhi, India
| | - Niti Sureka
- Department of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, New Delhi, India
| | - Sana Ahuja
- Department of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, New Delhi, India
| | - Durre Aden
- Department of Pathology, Hamdard Institute of Medical Science and Research, Jamia Hamdard, New Delhi, New Delhi, India
| | - Samreen Zaheer
- Department of Radiotherapy, Jawaharlal Nehru Medical College, AMU, Aligarh, India
| | - Sufian Zaheer
- Department of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, New Delhi, India
| |
Collapse
|
2
|
Anfray C, Varela CF, Ummarino A, Maeda A, Sironi M, Gandoy S, Brea J, Loza MI, León S, Calvo A, Correa J, Fernandez-Megia E, Alonso MJ, Allavena P, Crecente-Campo J, Andón FT. Polymeric nanocapsules loaded with poly(I:C) and resiquimod to reprogram tumor-associated macrophages for the treatment of solid tumors. Front Immunol 2024; 14:1334800. [PMID: 38259462 PMCID: PMC10800412 DOI: 10.3389/fimmu.2023.1334800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
Background In the tumor microenvironment (TME), tumor-associated macrophages (TAMs) play a key immunosuppressive role that limits the ability of the immune system to fight cancer. Toll-like receptors (TLRs) ligands, such as poly(I:C) or resiquimod (R848) are able to reprogram TAMs towards M1-like antitumor effector cells. The objective of our work has been to develop and evaluate polymeric nanocapsules (NCs) loaded with poly(I:C)+R848, to improve drug stability and systemic toxicity, and evaluate their targeting and therapeutic activity towards TAMs in the TME of solid tumors. Methods NCs were developed by the solvent displacement and layer-by-layer methodologies and characterized by dynamic light scattering and nanoparticle tracking analysis. Hyaluronic acid (HA) was chemically functionalized with mannose for the coating of the NCs to target TAMs. NCs loaded with TLR ligands were evaluated in vitro for toxicity and immunostimulatory activity by Alamar Blue, ELISA and flow cytometry, using primary human monocyte-derived macrophages. For in vivo experiments, the CMT167 lung cancer model and the MN/MCA1 fibrosarcoma model metastasizing to lungs were used; tumor-infiltrating leukocytes were evaluated by flow cytometry and multispectral immunophenotyping. Results We have developed polymeric NCs loaded with poly(I:C)+R848. Among a series of 5 lead prototypes, protamine-NCs were selected based on their physicochemical properties (size, charge, stability) and in vitro characterization, showing good biocompatibility on primary macrophages and ability to stimulate their production of T-cell attracting chemokines (CXCL10, CCL5) and to induce M1-like macrophages cytotoxicity towards tumor cells. In mouse tumor models, the intratumoral injection of poly(I:C)+R848-protamine-NCs significantly prevented tumor growth and lung metastasis. In an orthotopic murine lung cancer model, the intravenous administration of poly(I:C)+R848-prot-NCs, coated with an additional layer of HA-mannose to improve TAM-targeting, resulted in good antitumoral efficacy with no apparent systemic toxicity. While no significant alterations were observed in T cell numbers (CD8, CD4 or Treg), TAM-reprogramming in treated mice was confirmed by the relative decrease of interstitial versus alveolar macrophages, having higher CD86 expression but lower CD206 and Arg1 expression in the same cells, in treated mice. Conclusion Mannose-HA-protamine-NCs loaded with poly(I:C)+R848 successfully reprogram TAMs in vivo, and reduce tumor progression and metastasis spread in mouse tumors.
Collapse
Affiliation(s)
- Clément Anfray
- Laboratory of Cellular Immunology, IRCCS Humanitas Research Hospital, Rozzano-Milan, Italy
| | - Carmen Fernández Varela
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Aldo Ummarino
- Laboratory of Cellular Immunology, IRCCS Humanitas Research Hospital, Rozzano-Milan, Italy
| | - Akihiro Maeda
- Laboratory of Cellular Immunology, IRCCS Humanitas Research Hospital, Rozzano-Milan, Italy
| | - Marina Sironi
- Laboratory of Cellular Immunology, IRCCS Humanitas Research Hospital, Rozzano-Milan, Italy
| | - Sara Gandoy
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- BioFarma Research Group, CIMUS, Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Jose Brea
- BioFarma Research Group, CIMUS, Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - María Isabel Loza
- BioFarma Research Group, CIMUS, Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Sergio León
- Navarra Institute for Health Research (IdiSNA), Program in Solid Tumors, Center for Applied Medical Research (CIMA), Department of Pathology and Histology, University of Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
| | - Alfonso Calvo
- Navarra Institute for Health Research (IdiSNA), Program in Solid Tumors, Center for Applied Medical Research (CIMA), Department of Pathology and Histology, University of Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
| | - Juan Correa
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Eduardo Fernandez-Megia
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - María José Alonso
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Paola Allavena
- Laboratory of Cellular Immunology, IRCCS Humanitas Research Hospital, Rozzano-Milan, Italy
| | - José Crecente-Campo
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Fernando Torres Andón
- Laboratory of Cellular Immunology, IRCCS Humanitas Research Hospital, Rozzano-Milan, Italy
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Instituto de Investigación Biomédica de A Coruña (INIBIC), Oncology Department, Complexo Hospitalario de A Coruña (CHUAC), A Coruña, Spain
| |
Collapse
|