1
|
Barravecchia I, Lee JM, Manassa J, Magnuson B, Ferris SF, Cavanaugh S, Steele NG, Espinoza CE, Galban CJ, Ramnath N, Frankel TL, Pasca di Magliano M, Galban S. Modeling Molecular Pathogenesis of Idiopathic Pulmonary Fibrosis-Associated Lung Cancer in Mice. Mol Cancer Res 2024; 22:295-307. [PMID: 38015750 PMCID: PMC10906012 DOI: 10.1158/1541-7786.mcr-23-0480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/25/2023] [Accepted: 11/20/2023] [Indexed: 11/30/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is characterized by progressive, often fatal loss of lung function due to overactive collagen production and tissue scarring. Patients with IPF have a sevenfold-increased risk of developing lung cancer. The COVID-19 pandemic has increased the number of patients with lung diseases, and infection can worsen prognoses for those with chronic lung diseases and disease-associated cancer. Understanding the molecular pathogenesis of IPF-associated lung cancer is imperative for identifying diagnostic biomarkers and targeted therapies that will facilitate prevention of IPF and progression to lung cancer. To understand how IPF-associated fibroblast activation, matrix remodeling, epithelial-to-mesenchymal transition (EMT), and immune modulation influences lung cancer predisposition, we developed a mouse model to recapitulate the molecular pathogenesis of pulmonary fibrosis-associated lung cancer using the bleomycin and Lewis lung carcinoma models. We demonstrate that development of pulmonary fibrosis-associated lung cancer is likely linked to increased abundance of tumor-associated macrophages and a unique gene signature that supports an immune-suppressive microenvironment through secreted factors. Not surprisingly, preexisting fibrosis provides a pre-metastatic niche and results in augmented tumor growth, and tumors associated with bleomycin-induced fibrosis are characterized by a dramatic loss of cytokeratin expression, indicative of EMT. IMPLICATIONS This characterization of tumors associated with lung diseases provides new therapeutic targets that may aid in the development of treatment paradigms for lung cancer patients with preexisting pulmonary diseases.
Collapse
Affiliation(s)
- Ivana Barravecchia
- Center for Molecular Imaging, The University of Michigan Medical School, Ann Arbor, Michigan
- Department of Radiology, The University of Michigan Medical School, Ann Arbor, Michigan
| | - Jennifer M. Lee
- Center for Molecular Imaging, The University of Michigan Medical School, Ann Arbor, Michigan
- Department of Radiology, The University of Michigan Medical School, Ann Arbor, Michigan
| | - Jason Manassa
- Center for Molecular Imaging, The University of Michigan Medical School, Ann Arbor, Michigan
- Department of Radiology, The University of Michigan Medical School, Ann Arbor, Michigan
| | - Brian Magnuson
- Rogel Cancer Center, The University of Michigan Medical School, Ann Arbor, Michigan
- Department of Biostatistics, School of Public Health, The University of Michigan, Ann Arbor, Michigan
| | - Sarah F. Ferris
- Center for Molecular Imaging, The University of Michigan Medical School, Ann Arbor, Michigan
- Department of Radiology, The University of Michigan Medical School, Ann Arbor, Michigan
| | - Sophia Cavanaugh
- Department of Radiology, The University of Michigan Medical School, Ann Arbor, Michigan
| | - Nina G. Steele
- Department of Surgery, Henry Ford Pancreatic Cancer Center, Henry Ford Health, Detroit, Michigan
| | - Carlos E. Espinoza
- Department of Surgery, The University of Michigan Medical School, Ann Arbor, Michigan
| | - Craig J. Galban
- Department of Radiology, The University of Michigan Medical School, Ann Arbor, Michigan
- Department of Biomedical Engineering, The University of Michigan Medical School and College of Engineering, Ann Arbor, Michigan
| | - Nithya Ramnath
- Division of Hematology and Oncology, Department of Internal Medicine, The University of Michigan Medical School, Ann Arbor, Michigan
- Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, Michigan
| | - Timothy L. Frankel
- Rogel Cancer Center, The University of Michigan Medical School, Ann Arbor, Michigan
- Department of Surgery, The University of Michigan Medical School, Ann Arbor, Michigan
| | - Marina Pasca di Magliano
- Rogel Cancer Center, The University of Michigan Medical School, Ann Arbor, Michigan
- Department of Surgery, The University of Michigan Medical School, Ann Arbor, Michigan
- Department of Cell and Developmental Biology, The University of Michigan Medical School, Ann Arbor, Michigan
| | - Stefanie Galban
- Center for Molecular Imaging, The University of Michigan Medical School, Ann Arbor, Michigan
- Department of Radiology, The University of Michigan Medical School, Ann Arbor, Michigan
- Rogel Cancer Center, The University of Michigan Medical School, Ann Arbor, Michigan
| |
Collapse
|