1
|
Martín-Jimenez P, Bermejo-Guerrero L, Navarro-Riquelme M, Serrano-Lorenzo P, Garrido-Moraga R, Hernández-Laín A, Hernández-Voth A, Lora D, Morales M, Arenas J, Blázquez A, Martín MÁ, Domínguez-González C. Comprehensive analysis of GDF15 as a biomarker in primary mitochondrial myopathies. Mol Genet Metab 2025; 144:109023. [PMID: 39854975 DOI: 10.1016/j.ymgme.2025.109023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 01/06/2025] [Accepted: 01/07/2025] [Indexed: 01/27/2025]
Abstract
BACKGROUND AND OBJECTIVES Mitochondrial diseases are caused by defects in oxidative phosphorylation, with primary mitochondrial myopathies (PMM) being a subset where muscle involvement is predominant. PMM presents symptoms ranging from exercise intolerance to progressive muscle weakness, often involving ocular muscles, leading to ptosis and progressive external ophthalmoplegia (PEO). PMM can be due to variants in mitochondrial or nuclear DNA. Growth differentiation factor 15 (GDF15) has been identified as an accurate biomarker for mitochondrial dysfunction. This study evaluates the utility of GDF15 as a biomarker for monitoring PMM. METHODS This observational study involved 50 adult PMM patients. Clinical data were collected alongside functional motor outcomes measured by the Motor Research Council scale, 6-min walk test, North Star Ambulatory Assessment, and 100-m run test (100MRT). Biomarkers including serum lactate, creatine kinase (CK), creatinine, and plasma GDF15 were assessed. RESULTS Patients exhibited diverse phenotypes, including exercise intolerance (8 %), progressive myopathy (22 %), isolated PEO (24 %), and PEO plus (42 %). Significant correlations were found among motor function tests, with 100MRT being particularly sensitive. Biomarker analysis showed elevated lactate in 32 %, elevated CK in 54 %, reduced creatinine in 76 %, and elevated GDF15 in 86 % of cases. GDF15 levels correlated with motor performance, lactate levels, and mtDNA mutation load in muscle. Creatinine levels were strongly linked to disease severity. DISCUSSION This study underscores the heterogeneity of PMM and the importance of reliable biomarkers. GDF15 was consistently elevated across all PMM phenotypes and genotypes, correlating well with disease severity. Reduced creatinine also emerged as a potential prognostic marker.
Collapse
Affiliation(s)
- Paloma Martín-Jimenez
- Neuromuscular Diseases Unit, Neurology Department, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Laura Bermejo-Guerrero
- Neuromuscular Diseases Unit, Neurology Department, Hospital Universitario 12 de Octubre, Madrid, Spain; Mitochondrial and Neuromuscular Research Group '12 de Octubre', Hospital Research Institute (imas12), Madrid 28041, Spain
| | - María Navarro-Riquelme
- Mitochondrial and Neuromuscular Research Group '12 de Octubre', Hospital Research Institute (imas12), Madrid 28041, Spain
| | - Pablo Serrano-Lorenzo
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Rocío Garrido-Moraga
- Mitochondrial and Neuromuscular Research Group '12 de Octubre', Hospital Research Institute (imas12), Madrid 28041, Spain
| | | | - Ana Hernández-Voth
- Pulmonology Department, Mechanical Ventilation and Neuromuscular Disorders Unit, Hospital 12 de Octubre, Madrid 28041, Spain
| | - David Lora
- Clinical Research Unit, Hospital 12 de Octubre Research Institute (imas12), 28041 Madrid, Spain; Department of Statistics and Data Science, Facultad de Estudios Estadísticos, Universidad Complutense de Madrid, 28040 Madrid, Spain; Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
| | - Montserrat Morales
- Mitochondrial and Neuromuscular Research Group '12 de Octubre', Hospital Research Institute (imas12), Madrid 28041, Spain; Internal Medicine Department, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Joaquín Arenas
- Mitochondrial and Neuromuscular Research Group '12 de Octubre', Hospital Research Institute (imas12), Madrid 28041, Spain; Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Alberto Blázquez
- Mitochondrial and Neuromuscular Research Group '12 de Octubre', Hospital Research Institute (imas12), Madrid 28041, Spain; Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Miguel Ángel Martín
- Mitochondrial and Neuromuscular Research Group '12 de Octubre', Hospital Research Institute (imas12), Madrid 28041, Spain; Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain; Genetics Department, Hospital Universitario 12 de Octubre, Madrid 28041, Spain
| | - Cristina Domínguez-González
- Neuromuscular Diseases Unit, Neurology Department, Hospital Universitario 12 de Octubre, Madrid, Spain; Mitochondrial and Neuromuscular Research Group '12 de Octubre', Hospital Research Institute (imas12), Madrid 28041, Spain; Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
2
|
Gutiérrez-Hellín J, Del Coso J, Franco-Andrés A, Gamonales JM, Espada MC, González-García J, López-Moreno M, Varillas-Delgado D. Creatine Supplementation Beyond Athletics: Benefits of Different Types of Creatine for Women, Vegans, and Clinical Populations-A Narrative Review. Nutrients 2024; 17:95. [PMID: 39796530 PMCID: PMC11723027 DOI: 10.3390/nu17010095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/23/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025] Open
Abstract
Creatine monohydrate supplementation is widely used by athletes in high-intensity, power-based sports due to its ability to enhance short-term performance by increasing intramuscular phosphocreatine (PCr) stores, which aid in ATP resynthesis during intense muscle contractions. However, emerging evidence suggests that creatine monohydrate offers benefits beyond athletic performance. This narrative review explores the literature supporting the advantages of creatine supplementation in women, vegans, and clinical populations. In women, who typically have lower baseline intramuscular creatine levels, supplementation may help alleviate fatigue-related symptoms associated with the menstrual cycle, particularly during the early follicular and luteal phases. For vegans and vegetarians, who often have reduced creatine stores due to the absence of creatine-rich animal products in their diet, supplementation can improve both physical and cognitive performance while supporting adherence to plant-based diets. Additionally, creatine supplementation holds potential for various clinical populations. It may mitigate muscle wasting in conditions such as sarcopenia and cachexia, support neuroprotection in neurodegenerative diseases such as Parkinson's and Huntington's, improve exercise capacity in cardiovascular diseases, and enhance energy metabolism in chronic fatigue syndrome. Creatine may also aid recovery from traumatic brain injury by promoting brain energy metabolism and reducing neuronal damage. In conclusion, creatine monohydrate supplementation can enhance physical performance, cognitive function, and overall health in women, vegans, and clinical populations by addressing creatine deficiencies, improving energy metabolism, and supporting recovery from physical and neurological challenges. Most available evidence supports the effectiveness of creatine monohydrate, which should be considered the preferred form of creatine supplementation over other variants. Additionally, proper creatine dosing is essential to maximize benefits and minimize potential adverse effects that may arise from chronic ingestion of excessively high doses.
Collapse
Affiliation(s)
- Jorge Gutiérrez-Hellín
- Exercise and Sport Science, Faculty of Health Sciences, Universidad Francisco de Vitoria, 28223 Pozuelo, Spain; (A.F.-A.); (J.M.G.); (J.G.-G.); (D.V.-D.)
| | - Juan Del Coso
- Sport Sciences Research Centre, Rey Juan Carlos University, 28943 Fuenlabrada, Spain
| | - Arturo Franco-Andrés
- Exercise and Sport Science, Faculty of Health Sciences, Universidad Francisco de Vitoria, 28223 Pozuelo, Spain; (A.F.-A.); (J.M.G.); (J.G.-G.); (D.V.-D.)
| | - José M. Gamonales
- Exercise and Sport Science, Faculty of Health Sciences, Universidad Francisco de Vitoria, 28223 Pozuelo, Spain; (A.F.-A.); (J.M.G.); (J.G.-G.); (D.V.-D.)
- Training Optimization and Sports Performance Research Group (GOERD), Faculty of Sport Science, University of Extremadura, 10005 Cáceres, Spain
- Facultad de Educación y Psicología, Universidad de Extremadura, 06006 Badajoz, Spain
| | - Mário C. Espada
- Instituto Politécnico de Setúbal, Escola Superior de Educação, 2914-504 Setúbal, Portugal;
- Life Quality Research Centre (CIEQV), Complexo Andaluz, 2040-413 Rio Maior, Portugal
- Faculdade de Motricidade Humana (CIPER), Universidade de Lisboa, 1499-002 Cruz Quebrada, Portugal
- Sport Physical Activity and Health Research & INnovation CenTer (SPRINT), 2040-413 Rio Maior, Portugal
- Comprehensive Health Research Centre (CHRC), University of Évora, Largo dos Colegiais 2, 7000-645 Évora, Portugal
| | - Jaime González-García
- Exercise and Sport Science, Faculty of Health Sciences, Universidad Francisco de Vitoria, 28223 Pozuelo, Spain; (A.F.-A.); (J.M.G.); (J.G.-G.); (D.V.-D.)
| | - Miguel López-Moreno
- Diet, Planetary Health and Performance, Faculty of Health Sciences, Universidad Francisco de Vitoria, 28223 Pozuelo, Spain;
| | - David Varillas-Delgado
- Exercise and Sport Science, Faculty of Health Sciences, Universidad Francisco de Vitoria, 28223 Pozuelo, Spain; (A.F.-A.); (J.M.G.); (J.G.-G.); (D.V.-D.)
| |
Collapse
|
3
|
Candow DG, Forbes SC, Ostojic SM, Prokopidis K, Stock MS, Harmon KK, Faulkner P. "Heads Up" for Creatine Supplementation and its Potential Applications for Brain Health and Function. Sports Med 2023; 53:49-65. [PMID: 37368234 PMCID: PMC10721691 DOI: 10.1007/s40279-023-01870-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2023] [Indexed: 06/28/2023]
Abstract
There is emerging interest regarding the potential beneficial effects of creatine supplementation on indices of brain health and function. Creatine supplementation can increase brain creatine stores, which may help explain some of the positive effects on measures of cognition and memory, especially in aging adults or during times of metabolic stress (i.e., sleep deprivation). Furthermore, creatine has shown promise for improving health outcome measures associated with muscular dystrophy, traumatic brain injury (including concussions in children), depression, and anxiety. However, whether any sex- or age-related differences exist in regard to creatine and indices of brain health and function is relatively unknown. The purpose of this narrative review is to: (1) provide an up-to-date summary and discussion of the current body of research focusing on creatine and indices of brain health and function and (2) discuss possible sex- and age-related differences in response to creatine supplementation on brain bioenergetics, measures of brain health and function, and neurological diseases.
Collapse
Affiliation(s)
- Darren G Candow
- Aging Muscle & Bone Health Laboratory, Faculty of Kinesiology & Health Studies, University of Regina, 3737 Wascana Parkway, Regina, SK, S4S 0A2, Canada.
| | - Scott C Forbes
- Department of Physical Education Studies, Brandon University, Brandon, MB, Canada
| | - Sergej M Ostojic
- Department of Nutrition and Public Health, University of Agder, Kristiansand, Norway
| | | | - Matt S Stock
- School of Kinesiology and Rehabilitation Sciences, University of Central Florida, Orlando, FL, USA
| | - Kylie K Harmon
- Department of Exercise Science, Syracuse University, New York, NY, USA
| | - Paul Faulkner
- Department of Psychology, University of Roehampton, London, UK
| |
Collapse
|
4
|
Nersesova LS, Petrosyan MS, Arutjunyan AV. Neuroprotective Potential of Creatine. Hidden Resources of Its Therapeutic and Preventive Use. NEUROCHEM J+ 2022. [DOI: 10.1134/s1819712422010093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
5
|
van der Veen Y, Post A, Kremer D, Koops CA, Marsman E, Appeldoorn TYJ, Touw DJ, Westerhuis R, Heiner-Fokkema MR, Franssen CFM, Wallimann T, Bakker SJL. Chronic Dialysis Patients Are Depleted of Creatine: Review and Rationale for Intradialytic Creatine Supplementation. Nutrients 2021; 13:2709. [PMID: 34444869 PMCID: PMC8400647 DOI: 10.3390/nu13082709] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/29/2021] [Accepted: 08/03/2021] [Indexed: 12/11/2022] Open
Abstract
There is great need for the identification of new, potentially modifiable risk factors for the poor health-related quality of life (HRQoL) and of the excess risk of mortality in dialysis-dependent chronic kidney disease patients. Creatine is an essential contributor to cellular energy homeostasis, yet, on a daily basis, 1.6-1.7% of the total creatine pool is non-enzymatically degraded to creatinine and subsequently lost via urinary excretion, thereby necessitating a continuous supply of new creatine in order to remain in steady-state. Because of an insufficient ability to synthesize creatine, unopposed losses to the dialysis fluid, and insufficient intake due to dietary recommendations that are increasingly steered towards more plant-based diets, hemodialysis patients are prone to creatine deficiency, and may benefit from creatine supplementation. To avoid problems with compliance and fluid balance, and, furthermore, to prevent intradialytic losses of creatine to the dialysate, we aim to investigate the potential of intradialytic creatine supplementation in improving outcomes. Given the known physiological effects of creatine, intradialytic creatine supplementation may help to maintain creatine homeostasis among dialysis-dependent chronic kidney disease patients, and consequently improve muscle status, nutritional status, neurocognitive status, HRQoL. Additionally, we describe the rationale and design for a block-randomized, double-blind, placebo-controlled pilot study. The aim of the pilot study is to explore the creatine uptake in the circulation and tissues following different creatine supplementation dosages.
Collapse
Affiliation(s)
- Yvonne van der Veen
- Department of Internal Medicine, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (D.K.); (C.F.M.F.)
| | - Adrian Post
- Department of Internal Medicine, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (D.K.); (C.F.M.F.)
| | - Daan Kremer
- Department of Internal Medicine, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (D.K.); (C.F.M.F.)
| | - Christa A. Koops
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (C.A.K.); (M.R.H.-F.)
| | - Erik Marsman
- Dialysis Center Groningen, 9713 GZ Groningen, The Netherlands; (E.M.); (R.W.)
| | - Theo Y. Jerôme Appeldoorn
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (T.Y.J.A.); (D.J.T.)
| | - Daan J. Touw
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (T.Y.J.A.); (D.J.T.)
| | - Ralf Westerhuis
- Dialysis Center Groningen, 9713 GZ Groningen, The Netherlands; (E.M.); (R.W.)
| | - Margaretha Rebecca Heiner-Fokkema
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (C.A.K.); (M.R.H.-F.)
| | - Casper F. M. Franssen
- Department of Internal Medicine, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (D.K.); (C.F.M.F.)
| | - Theo Wallimann
- Department of Biology, ETH Zurich, 8092 Zurich, Switzerland;
| | - Stephan J. L. Bakker
- Department of Internal Medicine, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (D.K.); (C.F.M.F.)
| |
Collapse
|
6
|
Creatine Supplementation for Patients with Inflammatory Bowel Diseases: A Scientific Rationale for a Clinical Trial. Nutrients 2021; 13:nu13051429. [PMID: 33922654 PMCID: PMC8145094 DOI: 10.3390/nu13051429] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/18/2021] [Accepted: 04/22/2021] [Indexed: 12/12/2022] Open
Abstract
Based on theoretical considerations, experimental data with cells in vitro, animal studies in vivo, as well as a single case pilot study with one colitis patient, a consolidated hypothesis can be put forward, stating that “oral supplementation with creatine monohydrate (Cr), a pleiotropic cellular energy precursor, is likely to be effective in inducing a favorable response and/or remission in patients with inflammatory bowel diseases (IBD), like ulcerative colitis and/or Crohn’s disease”. A current pilot clinical trial that incorporates the use of oral Cr at a dose of 2 × 7 g per day, over an initial period of 2 months in conjunction with ongoing therapies (NCT02463305) will be informative for the proposed larger, more long-term Cr supplementation study of 2 × 3–5 g of Cr per day for a time of 3–6 months. This strategy should be insightful to the potential for Cr in reducing or alleviating the symptoms of IBD. Supplementation with chemically pure Cr, a natural nutritional supplement, is well tolerated not only by healthy subjects, but also by patients with diverse neuromuscular diseases. If the outcome of such a clinical pilot study with Cr as monotherapy or in conjunction with metformin were positive, oral Cr supplementation could then be used in the future as potentially useful adjuvant therapeutic intervention for patients with IBD, preferably together with standard medication used for treating patients with chronic ulcerative colitis and/or Crohn’s disease.
Collapse
|
7
|
Creatine Supplementation in Children and Adolescents. Nutrients 2021; 13:nu13020664. [PMID: 33670822 PMCID: PMC7922146 DOI: 10.3390/nu13020664] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/11/2021] [Accepted: 02/14/2021] [Indexed: 02/07/2023] Open
Abstract
Creatine is a popular ergogenic aid among athletic populations with consistent evidence indicating that creatine supplementation also continues to be commonly used among adolescent populations. In addition, the evidence base supporting the therapeutic benefits of creatine supplementation for a plethora of clinical applications in both adults and children continues to grow. Among pediatric populations, a strong rationale exists for creatine to afford therapeutic benefits pertaining to multiple neuromuscular and metabolic disorders, with preliminary evidence for other subsets of clinical populations as well. Despite the strong evidence supporting the efficacy and safety of creatine supplementation among adult populations, less is known as to whether similar physiological benefits extend to children and adolescent populations, and in particular those adolescent populations who are regularly participating in high-intensity exercise training. While limited in scope, studies involving creatine supplementation and exercise performance in adolescent athletes generally report improvements in several ergogenic outcomes with limited evidence of ergolytic properties and consistent reports indicating no adverse events associated with supplementation. The purpose of this article is to summarize the rationale, prevalence of use, performance benefits, clinical applications, and safety of creatine use in children and adolescents.
Collapse
|
8
|
Antonio J, Candow DG, Forbes SC, Gualano B, Jagim AR, Kreider RB, Rawson ES, Smith-Ryan AE, VanDusseldorp TA, Willoughby DS, Ziegenfuss TN. Common questions and misconceptions about creatine supplementation: what does the scientific evidence really show? J Int Soc Sports Nutr 2021; 18:13. [PMID: 33557850 PMCID: PMC7871530 DOI: 10.1186/s12970-021-00412-w] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 01/28/2021] [Indexed: 01/01/2023] Open
Abstract
Supplementing with creatine is very popular amongst athletes and exercising individuals for improving muscle mass, performance and recovery. Accumulating evidence also suggests that creatine supplementation produces a variety of beneficial effects in older and patient populations. Furthermore, evidence-based research shows that creatine supplementation is relatively well tolerated, especially at recommended dosages (i.e. 3-5 g/day or 0.1 g/kg of body mass/day). Although there are over 500 peer-refereed publications involving creatine supplementation, it is somewhat surprising that questions regarding the efficacy and safety of creatine still remain. These include, but are not limited to: 1. Does creatine lead to water retention? 2. Is creatine an anabolic steroid? 3. Does creatine cause kidney damage/renal dysfunction? 4. Does creatine cause hair loss / baldness? 5. Does creatine lead to dehydration and muscle cramping? 6. Is creatine harmful for children and adolescents? 7. Does creatine increase fat mass? 8. Is a creatine 'loading-phase' required? 9. Is creatine beneficial for older adults? 10. Is creatine only useful for resistance / power type activities? 11. Is creatine only effective for males? 12. Are other forms of creatine similar or superior to monohydrate and is creatine stable in solutions/beverages? To answer these questions, an internationally renowned team of research experts was formed to perform an evidence-based scientific evaluation of the literature regarding creatine supplementation.
Collapse
Affiliation(s)
- Jose Antonio
- Department of Health and Human Performance, Nova Southeastern University, Davie, Florida, USA.
| | - Darren G Candow
- Faculty of Kinesiology and Health Studies, University of Regina, Regina, Canada
| | - Scott C Forbes
- Department of Physical Education, Faculty of Education, Brandon University, Brandon, MB, Canada
| | - Bruno Gualano
- Applied Physiology & Nutrition Research Group; School of Medicine, FMUSP, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Andrew R Jagim
- Sports Medicine Department, Mayo Clinic Health System, La Crosse, WI, USA
| | - Richard B Kreider
- Exercise & Sport Nutrition Lab, Human Clinical Research Facility, Department of Health & Kinesiology, Texas A&M University, College Station, USA
| | - Eric S Rawson
- Department of Health, Nutrition, and Exercise Science, Messiah University, Mechanicsburg, PA, USA
| | - Abbie E Smith-Ryan
- Department of Exercise and Sport Science, University of North Carolina, Chapel Hill, NC, USA
| | - Trisha A VanDusseldorp
- Department of Exercise Science and Sport Management, Kennesaw State University, Kennesaw, GA, USA
| | - Darryn S Willoughby
- School of Exercise and Sport Science, University of Mary Hardin-Baylor, Belton, TX, USA
| | | |
Collapse
|
9
|
Kreider RB, Stout JR. Creatine in Health and Disease. Nutrients 2021; 13:nu13020447. [PMID: 33572884 PMCID: PMC7910963 DOI: 10.3390/nu13020447] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/22/2021] [Accepted: 01/27/2021] [Indexed: 12/14/2022] Open
Abstract
Although creatine has been mostly studied as an ergogenic aid for exercise, training, and sport, several health and potential therapeutic benefits have been reported. This is because creatine plays a critical role in cellular metabolism, particularly during metabolically stressed states, and limitations in the ability to transport and/or store creatine can impair metabolism. Moreover, increasing availability of creatine in tissue may enhance cellular metabolism and thereby lessen the severity of injury and/or disease conditions, particularly when oxygen availability is compromised. This systematic review assesses the peer-reviewed scientific and medical evidence related to creatine's role in promoting general health as we age and how creatine supplementation has been used as a nutritional strategy to help individuals recover from injury and/or manage chronic disease. Additionally, it provides reasonable conclusions about the role of creatine on health and disease based on current scientific evidence. Based on this analysis, it can be concluded that creatine supplementation has several health and therapeutic benefits throughout the lifespan.
Collapse
Affiliation(s)
- Richard B. Kreider
- Human Clinical Research Facility, Exercise & Sport Nutrition Lab, Department of Health & Kinesiology, Texas A&M University, College Station, TX 77843, USA
- Correspondence:
| | - Jeffery R. Stout
- Physiology of Work and Exercise Response (POWER) Laboratory, Institute of Exercise Physiology and Rehabilitation Science, School of Kinesiology and Physical Therapy, University of Central Florida, 12494 University Blvd., Orlando, FL 32816, USA;
| |
Collapse
|
10
|
Oviedo-Rondón EO, Córdova-Noboa HA. The Potential of Guanidino Acetic Acid to Reduce the Occurrence and Severity of Broiler Muscle Myopathies. Front Physiol 2020; 11:909. [PMID: 32922302 PMCID: PMC7456982 DOI: 10.3389/fphys.2020.00909] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 07/07/2020] [Indexed: 12/29/2022] Open
Abstract
Guanidinoacetic acid (GAA) is the biochemical precursor of creatine, which, in its phosphorylated form, is an essential high-energy carrier in the muscle. Although creatine has limited stability in feed processing, GAA is well established as a source of creatine in the animal feed industry. Published data demonstrate beneficial effects of GAA supplementation on muscle creatine, energy compounds, and antioxidant status, leading to improvements in broiler body weight gain, feed conversion ratio, and breast meat yield. Although increases in weight gain and meat yield are often associated with wooden breast (WB) and other myopathies, recent reports have suggested the potential of GAA supplementation to reduce the occurrence and severity of WB while improving breast meat yield. This disorder increases the hardness of the Pectoralis major muscle and has emerged as a current challenge to the broiler industry worldwide by impacting meat quality. Genetic selection, fast-growth rates, and environmental stressors have been identified to be the main factors related to this myopathy, but the actual cause of this disorder is still unknown. Creatine supplementation has been used as a nutritional prescription in the treatment of several muscular myopathies in humans and other animals. Because GAA is a common feed additive in poultry production, the potential of GAA supplementation to reduce broiler myopathies has been investigated in experimental and commercial scenarios. In addition, a few studies have evaluated the potential of creatine in plasma and blood enzymes related to creatine to be used as potential markers for WB. The evidence indicates that GAA could potentially minimize the incidence of WB. More data are warranted to understand the factors affecting the potential efficacy of GAA to reduce the occurrence and severity of myopathies.
Collapse
|
11
|
Creatine nanoliposome reverts the HPA-induced damage in complex II–III activity of the rats’ cerebral cortex. Mol Biol Rep 2019; 46:5897-5908. [DOI: 10.1007/s11033-019-05023-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 08/06/2019] [Indexed: 12/12/2022]
|
12
|
Charcot-Marie-Tooth: From Molecules to Therapy. Int J Mol Sci 2019; 20:ijms20143419. [PMID: 31336816 PMCID: PMC6679156 DOI: 10.3390/ijms20143419] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/03/2019] [Accepted: 07/03/2019] [Indexed: 01/08/2023] Open
Abstract
Charcot-Marie-Tooth (CMT) is the most prevalent category of inherited neuropathy. The most common inheritance pattern is autosomal dominant, though there also are X-linked and autosomal recessive subtypes. In addition to a variety of inheritance patterns, there are a myriad of genes associated with CMT, reflecting the heterogeneity of this disorder. Next generation sequencing (NGS) has expanded and simplified the diagnostic yield of genes/molecules underlying and/or associated with CMT, which is of paramount importance in providing a substrate for current and future targeted disease-modifying treatment options. Considerable research attention for disease-modifying therapy has been geared towards the most commonly encountered genetic mutations (PMP22, GJB1, MPZ, and MFN2). In this review, we highlight the clinical background, molecular understanding, and therapeutic investigations of these CMT subtypes, while also discussing therapeutic research pertinent to the remaining less common CMT subtypes.
Collapse
|
13
|
Torok ZA, Busekrus RB, Hydock DS. Effects of Creatine Supplementation on Muscle Fatigue in Rats Receiving Doxorubicin Treatment. Nutr Cancer 2019; 72:252-259. [PMID: 31184509 DOI: 10.1080/01635581.2019.1623900] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The purpose of this study was to investigate the effects of in vivo creatine monohydrate (Cr) supplementation on doxorubicin (Dox)-induced muscle dysfunction. Male rats were fed a diet supplemented with 3% Cr or a standard chow for 2 wk. After 2 wk of feeding, animals received Dox or saline as a placebo. Five days post-injection, grip strength was measured, and muscle fatigue was analyzed ex vivo. When compared with controls, a significantly lower grip strength was observed with Dox treatment, but no significant handgrip difference was observed with Cr feeding prior to Dox treatment when compared to controls. In the isolated muscle fatigue experiments, solei (primarily type I muscle) from controls produced significantly less force than baseline at 60 s and solei from Dox treated rats produced significantly less force than baseline at 30 s; however, Cr feeding prior to Dox produced significantly less force than baseline at 60 s. In the primarily type II EDL, a decline in force production from baseline was observed at 50 s in controls and Cr + Dox and at 20 s in standard chow + Dox. Cr attenuated the increase in fatigue that accompanies Dox treatment suggesting that Cr supplementation may have use in managing Dox myotoxicity.
Collapse
Affiliation(s)
- Zoltan A Torok
- School of Sport and Exercise Science, University of Northern Colorado, Greeley, Colorado, USA
| | - Raquel B Busekrus
- School of Sport and Exercise Science, University of Northern Colorado, Greeley, Colorado, USA
| | - David S Hydock
- School of Sport and Exercise Science, University of Northern Colorado, Greeley, Colorado, USA.,The University of Northern Colorado Cancer Rehabilitation Institute, University of Northern Colorado, Greeley, Colorado, USA
| |
Collapse
|
14
|
Córdova-Noboa H, Oviedo-Rondón E, Sarsour A, Barnes J, Ferzola P, Rademacher-Heilshorn M, Braun U. Performance, meat quality, and pectoral myopathies of broilers fed either corn or sorghum based diets supplemented with guanidinoacetic acid. Poult Sci 2018; 97:2479-2493. [DOI: 10.3382/ps/pey096] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 03/09/2018] [Indexed: 11/20/2022] Open
|
15
|
Córdova-Noboa H, Oviedo-Rondón E, Sarsour A, Barnes J, Sapcota D, López D, Gross L, Rademacher-Heilshorn M, Braun U. Effect of guanidinoacetic acid supplementation on live performance, meat quality, pectoral myopathies and blood parameters of male broilers fed corn-based diets with or without poultry by-products. Poult Sci 2018; 97:2494-2505. [DOI: 10.3382/ps/pey097] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 03/09/2018] [Indexed: 11/20/2022] Open
|
16
|
Abstract
Exertional (exercise-induced) rhabdomyolysis is a potentially life threatening condition that has been the subject of research, intense discussion, and media attention. The causes of rhabdomyolysis are numerous and can include direct muscle injury, unaccustomed exercise, ischemia, extreme temperatures, electrolyte abnormalities, endocrinologic conditions, genetic disorders, autoimmune disorders, infections, drugs, toxins, and venoms. The objective of this article is to review the literature on exertional rhabdomyolysis, identify precipitating factors, and examine the role of the dietary supplement creatine monohydrate. PubMed and SPORTDiscus databases were searched using the terms rhabdomyolysis, muscle damage, creatine, creatine supplementation, creatine monohydrate, and phosphocreatine. Additionally, the references of papers identified through this search were examined for relevant studies. A meta-analysis was not performed. Although the prevalence of rhabdomyolysis is low, instances still occur where exercise is improperly prescribed or used as punishment, or incomplete medical history is taken, and exertional rhabdomyolysis occurs. Creatine monohydrate does not appear to be a precipitating factor for exertional rhabdomyolysis. Healthcare professionals should be able to recognize the basic signs of exertional rhabdomyolysis so prompt treatment can be administered. For the risk of rhabdomyolysis to remain low, exercise testing and prescription must be properly conducted based on professional standards.
Collapse
Affiliation(s)
- Eric S Rawson
- Department of Health, Nutrition and Exercise Science, Messiah College, One College Avenue Suite 4501, Mechanicsburg, PA, 17055, USA.
| | | | - Mark A Tarnopolsky
- Department of Pediatrics and Medicine, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
17
|
Dowling JJ, D. Gonorazky H, Cohn RD, Campbell C. Treating pediatric neuromuscular disorders: The future is now. Am J Med Genet A 2018; 176:804-841. [PMID: 28889642 PMCID: PMC5900978 DOI: 10.1002/ajmg.a.38418] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 07/31/2017] [Indexed: 12/12/2022]
Abstract
Pediatric neuromuscular diseases encompass all disorders with onset in childhood and where the primary area of pathology is in the peripheral nervous system. These conditions are largely genetic in etiology, and only those with a genetic underpinning will be presented in this review. This includes disorders of the anterior horn cell (e.g., spinal muscular atrophy), peripheral nerve (e.g., Charcot-Marie-Tooth disease), the neuromuscular junction (e.g., congenital myasthenic syndrome), and the muscle (myopathies and muscular dystrophies). Historically, pediatric neuromuscular disorders have uniformly been considered to be without treatment possibilities and to have dire prognoses. This perception has gradually changed, starting in part with the discovery and widespread application of corticosteroids for Duchenne muscular dystrophy. At present, several exciting therapeutic avenues are under investigation for a range of conditions, offering the potential for significant improvements in patient morbidities and mortality and, in some cases, curative intervention. In this review, we will present the current state of treatment for the most common pediatric neuromuscular conditions, and detail the treatment strategies with the greatest potential for helping with these devastating diseases.
Collapse
Affiliation(s)
- James J. Dowling
- Division of NeurologyHospital for Sick ChildrenTorontoOntarioCanada
- Program for Genetics and Genome BiologyHospital for Sick ChildrenTorontoOntarioCanada
- Departments of Paediatrics and Molecular GeneticsUniversity of TorontoTorontoOntarioCanada
| | | | - Ronald D. Cohn
- Program for Genetics and Genome BiologyHospital for Sick ChildrenTorontoOntarioCanada
- Departments of Paediatrics and Molecular GeneticsUniversity of TorontoTorontoOntarioCanada
| | - Craig Campbell
- Department of PediatricsClinical Neurological SciencesEpidemiologyWestern UniversityLondonOntarioCanada
| |
Collapse
|
18
|
Severe Hyperhomocysteinemia Decreases Creatine Kinase Activity and Causes Memory Impairment: Neuroprotective Role of Creatine. Neurotox Res 2017; 32:585-593. [DOI: 10.1007/s12640-017-9767-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 05/30/2017] [Accepted: 06/08/2017] [Indexed: 12/26/2022]
|
19
|
Neuroprotective Effect of Creatine and Pyruvate on Enzyme Activities of Phosphoryl Transfer Network and Oxidative Stress Alterations Caused by Leucine Administration in Wistar Rats. Neurotox Res 2017; 32:575-584. [DOI: 10.1007/s12640-017-9762-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 05/22/2017] [Accepted: 05/26/2017] [Indexed: 01/25/2023]
|
20
|
Kreider RB, Kalman DS, Antonio J, Ziegenfuss TN, Wildman R, Collins R, Candow DG, Kleiner SM, Almada AL, Lopez HL. International Society of Sports Nutrition position stand: safety and efficacy of creatine supplementation in exercise, sport, and medicine. J Int Soc Sports Nutr 2017; 14:18. [PMID: 28615996 PMCID: PMC5469049 DOI: 10.1186/s12970-017-0173-z] [Citation(s) in RCA: 353] [Impact Index Per Article: 44.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 05/30/2017] [Indexed: 12/16/2022] Open
Abstract
Creatine is one of the most popular nutritional ergogenic aids for athletes. Studies have consistently shown that creatine supplementation increases intramuscular creatine concentrations which may help explain the observed improvements in high intensity exercise performance leading to greater training adaptations. In addition to athletic and exercise improvement, research has shown that creatine supplementation may enhance post-exercise recovery, injury prevention, thermoregulation, rehabilitation, and concussion and/or spinal cord neuroprotection. Additionally, a number of clinical applications of creatine supplementation have been studied involving neurodegenerative diseases (e.g., muscular dystrophy, Parkinson's, Huntington's disease), diabetes, osteoarthritis, fibromyalgia, aging, brain and heart ischemia, adolescent depression, and pregnancy. These studies provide a large body of evidence that creatine can not only improve exercise performance, but can play a role in preventing and/or reducing the severity of injury, enhancing rehabilitation from injuries, and helping athletes tolerate heavy training loads. Additionally, researchers have identified a number of potentially beneficial clinical uses of creatine supplementation. These studies show that short and long-term supplementation (up to 30 g/day for 5 years) is safe and well-tolerated in healthy individuals and in a number of patient populations ranging from infants to the elderly. Moreover, significant health benefits may be provided by ensuring habitual low dietary creatine ingestion (e.g., 3 g/day) throughout the lifespan. The purpose of this review is to provide an update to the current literature regarding the role and safety of creatine supplementation in exercise, sport, and medicine and to update the position stand of International Society of Sports Nutrition (ISSN).
Collapse
Affiliation(s)
- Richard B. Kreider
- Exercise & Sport Nutrition Lab, Human Clinical Research Facility, Department of Health & Kinesiology, Texas A&M University, College Station, TX 77843-4243 USA
| | - Douglas S. Kalman
- Nutrition Research Unit, QPS, 6141 Sunset Drive Suite 301, Miami, FL 33143 USA
| | - Jose Antonio
- Department of Health and Human Performance, Nova Southeastern University, Davie, FL 33328 USA
| | - Tim N. Ziegenfuss
- The Center for Applied Health Sciences, 4302 Allen Road, STE 120, Stow, OH 44224 USA
| | - Robert Wildman
- Post Active Nutrition, 111 Leslie St, Dallas, TX 75208 USA
| | - Rick Collins
- Collins Gann McCloskey & Barry, PLLC, 138 Mineola Blvd., Mineola, NY 11501 USA
| | - Darren G. Candow
- Faculty of Kinesiology and Health Studies, University of Regina, Regina, SK S4S 0A2 Canada
| | | | | | - Hector L. Lopez
- The Center for Applied Health Sciences, 4302 Allen Road, STE 120, Stow, OH 44224 USA
- Supplement Safety Solutions, LLC, Bedford, MA 01730 USA
| |
Collapse
|
21
|
Abstract
Nutrition is one method to counter the negative impact of an exercise-induced injury. Deficiencies of energy, protein and other nutrients should be avoided. Claims for the effectiveness of many other nutrients following injuries are rampant, but the evidence is equivocal. The results of an exercise-induced injury may vary widely depending on the nature of the injury and severity. Injuries typically result in cessation, or at least a reduction, in participation in sport and decreased physical activity. Limb immobility may be necessary with some injuries, contributing to reduced activity and training. Following an injury, an inflammatory response is initiated and while excess inflammation may be harmful, given the importance of the inflammatory process for wound healing, attempting to drastically reduce inflammation may not be ideal for optimal recovery. Injuries severe enough for immobilization of a limb result in loss of muscle mass and reduced muscle strength and function. Loss of muscle results from reductions in basal muscle protein synthesis and the resistance of muscle to anabolic stimulation. Energy balance is critical. Higher protein intakes (2-2.5 g/kg/day) seem to be warranted during immobilization. At the very least, care should be taken not to reduce the absolute amount of protein intake when energy intake is reduced. There is promising, albeit preliminary, evidence for the use of omega-3 fatty acids and creatine to counter muscle loss and enhance hypertrophy, respectively. The overriding nutritional recommendation for injured exercisers should be to consume a well-balanced diet based on whole, minimally processed foods or ingredients made from whole foods. The diet composition should be carefully assessed and changes considered as the injury heals and activity patterns change.
Collapse
Affiliation(s)
- Kevin D Tipton
- Health and Exercise Sciences Research Group, University of Stirling, Cottrell Building, Stirling, FK9 4LA, Scotland, UK.
| |
Collapse
|
22
|
Creatine Prevents the Structural and Functional Damage to Mitochondria in Myogenic, Oxidatively Stressed C2C12 Cells and Restores Their Differentiation Capacity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:5152029. [PMID: 27610211 PMCID: PMC5005540 DOI: 10.1155/2016/5152029] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 06/29/2016] [Indexed: 11/18/2022]
Abstract
Creatine (Cr) is a nutritional supplement promoting a number of health benefits. Indeed Cr has been shown to be beneficial in disease-induced muscle atrophy, improve rehabilitation, and afford mild antioxidant activity. The beneficial effects are likely to derive from pleiotropic interactions. In accord with this notion, we previously demonstrated that multiple pleiotropic effects, including preservation of mitochondrial damage, account for the capacity of Cr to prevent the differentiation arrest caused by oxidative stress in C2C12 myoblasts. Given the importance of mitochondria in supporting the myogenic process, here we further explored the protective effects of Cr on the structure, function, and networking of these organelles in C2C12 cells differentiating under oxidative stressing conditions; the effects on the energy sensor AMPK, on PGC-1α, which is involved in mitochondrial biogenesis and its downstream effector Tfam were also investigated. Our results indicate that damage to mitochondria is crucial in the differentiation imbalance caused by oxidative stress and that the Cr-prevention of these injuries is invariably associated with the recovery of the normal myogenic capacity. We also found that Cr activates AMPK and induces an upregulation of PGC-1α expression, two events which are likely to contribute to the protection of mitochondrial quality and function.
Collapse
|
23
|
de Andrade RB, Gemelli T, Rojas DB, Kim TDH, Zanatta Â, Schmitz F, Rodrigues AF, Wyse ATS, Wajner M, Dutra-Filho CS, Wannmacher CMD. Evaluation of Oxidative Stress Parameters and Energy Metabolism in Cerebral Cortex of Rats Subjected to Sarcosine Administration. Mol Neurobiol 2016; 54:4496-4506. [PMID: 27356917 DOI: 10.1007/s12035-016-9984-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 06/14/2016] [Indexed: 10/21/2022]
Abstract
Sarcosine is an N-methyl derivative of the amino acid glycine, and its elevation in tissues and physiological fluids of patients with sarcosinemia could reflect a deficient pool size of activated 1-carbon units. Sarcosinemia is a rare inherited metabolic condition associated with mental retardation. In the present study, we investigated the acute effect of sarcosine and/or creatine plus pyruvate on some parameters of oxidative stress and energy metabolism in cerebral cortex homogenates of 21-day-old Wistar rats. Acute administration of sarcosine induced oxidative stress and diminished the activities of adenylate kinase, GAPDH, complex IV, and mitochondrial and cytosolic creatine kinase. On the other hand, succinate dehydrogenase activity was enhanced in cerebral cortex of rats. Moreover, total sulfhydryl content was significantly diminished, while DCFH oxidation, TBARS content, and activities of SOD and GPx were significantly enhanced by acute administration of sarcosine. Co-administration of creatine plus pyruvate was effective in the prevention of alterations provoked by sarcosine administration on the oxidative stress and the enzymes of phosphoryltransfer network. These results indicate that acute administration of sarcosine may stimulate oxidative stress and alter the energy metabolism in cerebral cortex of rats. In case these effects also occur in humans, they may contribute, along with other mechanisms, to the neurological dysfunction of sarcosinemia, and creatine and pyruvate supplementation could be beneficial to the patients.
Collapse
Affiliation(s)
- Rodrigo Binkowski de Andrade
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Rua Ramiro Barcelos 2600, CEP 90.035-003, Porto Alegre, RS, Brazil. .,Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600-Anexo, CEP 90.035-003, Porto Alegre, RS, Brazil. .,Faculdade da Serra Gaúcha, FSG, Rua Rua Os Dezoito do Forte, 2366, CEP 95.020-472, Caxias do Sul, RS, Brazil.
| | - Tanise Gemelli
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Rua Ramiro Barcelos 2600, CEP 90.035-003, Porto Alegre, RS, Brazil
| | - Denise Bertin Rojas
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Rua Ramiro Barcelos 2600, CEP 90.035-003, Porto Alegre, RS, Brazil
| | - Tomas Duk Hwa Kim
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600-Anexo, CEP 90.035-003, Porto Alegre, RS, Brazil
| | - Ângela Zanatta
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Rua Ramiro Barcelos 2600, CEP 90.035-003, Porto Alegre, RS, Brazil
| | - Felipe Schmitz
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Rua Ramiro Barcelos 2600, CEP 90.035-003, Porto Alegre, RS, Brazil
| | - André Felipe Rodrigues
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Rua Ramiro Barcelos 2600, CEP 90.035-003, Porto Alegre, RS, Brazil
| | - Angela T S Wyse
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Rua Ramiro Barcelos 2600, CEP 90.035-003, Porto Alegre, RS, Brazil.,Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600-Anexo, CEP 90.035-003, Porto Alegre, RS, Brazil
| | - Moacir Wajner
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Rua Ramiro Barcelos 2600, CEP 90.035-003, Porto Alegre, RS, Brazil.,Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600-Anexo, CEP 90.035-003, Porto Alegre, RS, Brazil
| | - Carlos Severo Dutra-Filho
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Rua Ramiro Barcelos 2600, CEP 90.035-003, Porto Alegre, RS, Brazil.,Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600-Anexo, CEP 90.035-003, Porto Alegre, RS, Brazil
| | - Clovis Milton Duval Wannmacher
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Rua Ramiro Barcelos 2600, CEP 90.035-003, Porto Alegre, RS, Brazil.,Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600-Anexo, CEP 90.035-003, Porto Alegre, RS, Brazil
| |
Collapse
|
24
|
New insights into the trophic and cytoprotective effects of creatine in in vitro and in vivo models of cell maturation. Amino Acids 2016; 48:1897-911. [PMID: 26724921 DOI: 10.1007/s00726-015-2161-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 12/17/2015] [Indexed: 12/19/2022]
|
25
|
D'Antona G, Nabavi SM, Micheletti P, Di Lorenzo A, Aquilani R, Nisoli E, Rondanelli M, Daglia M. Creatine, L-carnitine, and ω3 polyunsaturated fatty acid supplementation from healthy to diseased skeletal muscle. BIOMED RESEARCH INTERNATIONAL 2014; 2014:613890. [PMID: 25243159 PMCID: PMC4163371 DOI: 10.1155/2014/613890] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 07/19/2014] [Accepted: 08/06/2014] [Indexed: 12/22/2022]
Abstract
Myopathies are chronic degenerative pathologies that induce the deterioration of the structure and function of skeletal muscle. So far a definitive therapy has not yet been developed and the main aim of myopathy treatment is to slow the progression of the disease. Current nonpharmacological therapies include rehabilitation, ventilator assistance, and nutritional supplements, all of which aim to delay the onset of the disease and relieve its symptoms. Besides an adequate diet, nutritional supplements could play an important role in the treatment of myopathic patients. Here we review the most recent in vitro and in vivo studies investigating the role supplementation with creatine, L-carnitine, and ω3 PUFAs plays in myopathy treatment. Our results suggest that these dietary supplements could have beneficial effects; nevertheless continued studies are required before they could be recommended as a routine treatment in muscle diseases.
Collapse
Affiliation(s)
- Giuseppe D'Antona
- Department of Molecular Medicine and Laboratory for Motor Activities in Rare Diseases (LUSAMMR), University of Pavia, Via Forlanini 6, 27100 Pavia, Italy
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, P.O. Box 19395-5487, Tehran, Iran
| | - Piero Micheletti
- Department of Experimental and Forensic Medicine, University of Pavia, Via Forlanini 2, 27100 Pavia, Italy
| | - Arianna Di Lorenzo
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Roberto Aquilani
- Maugeri Foundation IRCCS, Montescano Scientific Institute, Via Per Montescano 31, 27040 Montescano, Italy
| | - Enzo Nisoli
- Center for Study and Research on Obesity, Department of Medical Biotechnology and Translational Medicine, University of Milan, Via Vanvitelli 32, 20129 Milan, Italy
| | - Mariangela Rondanelli
- Human Nutrition Section, Health Sciences Department, University of Pavia, Azienda di Servizi alla Persona, Via Emilia 12, 27100 Pavia, Italy
| | - Maria Daglia
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| |
Collapse
|
26
|
de Andrade RB, Gemelli T, Rojas DB, Bonorino NF, Costa BML, Funchal C, Dutra-Filho CS, Wannmacher CMD. Creatine and Pyruvate Prevent the Alterations Caused by Tyrosine on Parameters of Oxidative Stress and Enzyme Activities of Phosphoryltransfer Network in Cerebral Cortex of Wistar Rats. Mol Neurobiol 2014; 51:1184-94. [DOI: 10.1007/s12035-014-8791-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 06/15/2014] [Indexed: 12/01/2022]
|
27
|
Dos Reis EA, Rieger E, de Souza SS, Rasia-Filho AA, Wannmacher CMD. Effects of a co-treatment with pyruvate and creatine on dendritic spines in rat hippocampus and posterodorsal medial amygdala in a phenylketonuria animal model. Metab Brain Dis 2013; 28:509-17. [PMID: 23430365 DOI: 10.1007/s11011-013-9389-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 02/11/2013] [Indexed: 12/13/2022]
Abstract
Phenylketonuria (PKU) is the most frequent aminoacidopathy that damage the central nervous system and is characterized by neural injury, mental retardation and accumulation of phenylalanine and its metabolites in plasma and tissues. So far, the only effective protection against brain injury is the administration of special phenylalanine-free diets. Animals with lesions in the hippocampus and amygdala had behavioral impairments indicating the importance of the integrity of these brain structures in learning and memory tasks which are disability characteristics of patients affected by PKU. In the present study we aimed to test the effect of the combination of two energetic and antioxidant compounds-pyruvate and creatine (intraperitoneal injections of 0.2 mg/g of body weight and 0.4 mg/g of body weight, respectively, treatment from the 7th to the 28th postnatal day)-in animals subjected to a chronic model of PKU. To assess likely effects, the density of dendritic spines in the hippocampal CA1 region and in the posterodorsal medial amygdala of 60-day-old male rats were analyzed under confocal microscopy. Present results showed that the co-treatment with pyruvate and creatine prevented the reduction in dendritic spine density in the stratum radiatum of the CA1 hippocampal field and in the posterodorsal medial amygdala of PKU animals. If this can also occur in PKU patients, it is possible that creatine and pyruvate may help to prevent brain damage in patients under specific diet.
Collapse
Affiliation(s)
- Eleonora Araújo Dos Reis
- Departamento de Bioquímica, Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | | | | | | |
Collapse
|
28
|
Tang FC, Chan CC, Kuo PL. Contribution of creatine to protein homeostasis in athletes after endurance and sprint running. Eur J Nutr 2013; 53:61-71. [PMID: 23392621 DOI: 10.1007/s00394-013-0498-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2012] [Accepted: 01/17/2013] [Indexed: 11/29/2022]
Abstract
PURPOSE Few studies have focused on the metabolic changes induced by creatine supplementation. This study investigated the effects of creatine supplementation on plasma and urinary metabolite changes of athletes after endurance and sprint running. METHODS Twelve male athletes (20.3 ± 1.4 y) performed two identical (65-70 % maximum heart rate reserved) 60 min running exercises (endurance trial) before and after creatine supplementation (12 g creatine monohydrate/day for 15 days), followed by a 5-day washout period. Subsequently, they performed two identical 100 m sprint running exercises (power trial) before and after 15 days of creatine supplementation in accordance with the supplementary protocol of the endurance trial. Body composition measurements were performed during the entire study. Plasma samples were examined for the concentrations of glucose, lactate, branched-chain amino acids (BCAAs), free-tryptophan (f-TRP), glutamine, alanine, hypoxanthine, and uric acid. Urinary samples were examined for the concentrations of hydroxyproline, 3-methylhistidine, urea nitrogen, and creatinine. RESULTS Creatine supplementation significantly increased body weights of the athletes of endurance trial. Plasma lactate concentration and ratio of f-TRP/BCAAs after recovery from endurance running were significantly decreased with creatine supplementation. Plasma purine metabolites (the sum of hypoxanthine and uric acid), glutamine, urinary 3-methylhistidine, and urea nitrogen concentrations tended to decrease before running in trials with creatine supplements. After running, urinary hydroxyproline concentration significantly increased in the power trial with creatine supplements. CONCLUSIONS The findings suggest that creatine supplementation tended to decrease muscle glycogen and protein degradation, especially after endurance exercise. However, creatine supplementation might induce collagen proteolysis in athletes after sprint running.
Collapse
Affiliation(s)
- Fu-Chun Tang
- Graduate Institute of Nutritional Sciences and Education, #162, Hoping E. Rd. 1st Sec, Taipei, 10600, Taiwan, ROC,
| | | | | |
Collapse
|
29
|
Kolling J, Scherer EBS, Siebert C, Hansen F, Torres FV, Scaini G, Ferreira G, de Andrade RB, Gonçalves CAS, Streck EL, Wannmacher CMD, Wyse ATS. Homocysteine induces energy imbalance in rat skeletal muscle: is creatine a protector? Cell Biochem Funct 2012; 31:575-84. [PMID: 23225327 DOI: 10.1002/cbf.2938] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 10/23/2012] [Accepted: 11/15/2012] [Indexed: 12/22/2022]
Abstract
Homocystinuria is a neurometabolic disease caused by a severe deficiency of cystathionine beta-synthase activity, resulting in severe hyperhomocysteinemia. Affected patients present several symptoms including a variable degree of motor dysfunction. In this study, we investigated the effect of chronic hyperhomocysteinemia on the cell viability of the mitochondrion, as well as on some parameters of energy metabolism, such as glucose oxidation and activities of pyruvate kinase, citrate synthase, isocitrate dehydrogenase, malate dehydrogenase, respiratory chain complexes and creatine kinase in gastrocnemius rat skeletal muscle. We also evaluated the effect of creatine on biochemical alterations elicited by hyperhomocysteinemia. Wistar rats received daily subcutaneous injections of homocysteine (0.3-0.6 µmol/g body weight) and/or creatine (50 mg/kg body weight) from the 6th to the 28th days of age. The animals were decapitated 12 h after the last injection. Homocysteine decreased the cell viability of the mitochondrion and the activities of pyruvate kinase and creatine kinase. Succinate dehydrogenase was increased other evaluated parameters were not changed by this amino acid. Creatine, when combined with homocysteine, prevented or caused a synergistic effect on some changes provoked by this amino acid. Creatine per se or creatine plus homocysteine altered glucose oxidation. These findings provide insights into the mechanisms by which homocysteine exerts its effects on skeletal muscle function, more studies are needed to elucidate them. Although creatine prevents some alterations caused by homocysteine, it should be used with caution, mainly in healthy individuals because it could change the homeostasis of normal physiological functions.
Collapse
Affiliation(s)
- Janaína Kolling
- Laboratório de Neuroproteção e Doenças Neurometabólicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil; Laboratório de Erros Inatos do Metabolismo, Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
BACKGROUND The FRG1-transgenic mouse displays muscle dysfunction and atrophy reminiscent of fascioscapulohumeral muscular dystrophy (FSHD) and could provide a model to determine potential therapeutic interventions. METHODS To determine if FRG1 mice benefit from treatments that improve muscle mass and function, mice were treated with creatine alone (Cr) or in combination with treadmill exercise (CrEX). RESULTS The CrEx treatment increased quadriceps weight, mitochondrial content (cytochome c oxidase (COX) activity, COX subunit one and four protein), and induced greater improvements in grip strength and rotarod fall speed. While Cr increased COX subunits one and four protein, no effect on muscle mass or performance was found. Since Cr resulted in no functional improvements, the benefits of CrEx may be mediated by exercise; however, the potential synergistic action of the combined treatment cannot be excluded. CONCLUSION Treatment with CrEx attenuates atrophy and muscle dysfunction associated with FRG1 overexpression. These data suggest exercise and creatine supplementation may benefit individuals with FSHD.
Collapse
|
31
|
Wallimann T, Tokarska-Schlattner M, Schlattner U. The creatine kinase system and pleiotropic effects of creatine. Amino Acids 2011; 40:1271-96. [PMID: 21448658 PMCID: PMC3080659 DOI: 10.1007/s00726-011-0877-3] [Citation(s) in RCA: 483] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2010] [Accepted: 12/02/2010] [Indexed: 11/24/2022]
Abstract
The pleiotropic effects of creatine (Cr) are based mostly on the functions of the enzyme creatine kinase (CK) and its high-energy product phosphocreatine (PCr). Multidisciplinary studies have established molecular, cellular, organ and somatic functions of the CK/PCr system, in particular for cells and tissues with high and intermittent energy fluctuations. These studies include tissue-specific expression and subcellular localization of CK isoforms, high-resolution molecular structures and structure–function relationships, transgenic CK abrogation and reverse genetic approaches. Three energy-related physiological principles emerge, namely that the CK/PCr systems functions as (a) an immediately available temporal energy buffer, (b) a spatial energy buffer or intracellular energy transport system (the CK/PCr energy shuttle or circuit) and (c) a metabolic regulator. The CK/PCr energy shuttle connects sites of ATP production (glycolysis and mitochondrial oxidative phosphorylation) with subcellular sites of ATP utilization (ATPases). Thus, diffusion limitations of ADP and ATP are overcome by PCr/Cr shuttling, as most clearly seen in polar cells such as spermatozoa, retina photoreceptor cells and sensory hair bundles of the inner ear. The CK/PCr system relies on the close exchange of substrates and products between CK isoforms and ATP-generating or -consuming processes. Mitochondrial CK in the mitochondrial outer compartment, for example, is tightly coupled to ATP export via adenine nucleotide transporter or carrier (ANT) and thus ATP-synthesis and respiratory chain activity, releasing PCr into the cytosol. This coupling also reduces formation of reactive oxygen species (ROS) and inhibits mitochondrial permeability transition, an early event in apoptosis. Cr itself may also act as a direct and/or indirect anti-oxidant, while PCr can interact with and protect cellular membranes. Collectively, these factors may well explain the beneficial effects of Cr supplementation. The stimulating effects of Cr for muscle and bone growth and maintenance, and especially in neuroprotection, are now recognized and the first clinical studies are underway. Novel socio-economically relevant applications of Cr supplementation are emerging, e.g. for senior people, intensive care units and dialysis patients, who are notoriously Cr-depleted. Also, Cr will likely be beneficial for the healthy development of premature infants, who after separation from the placenta depend on external Cr. Cr supplementation of pregnant and lactating women, as well as of babies and infants are likely to be of benefit for child development. Last but not least, Cr harbours a global ecological potential as an additive for animal feed, replacing meat- and fish meal for animal (poultry and swine) and fish aqua farming. This may help to alleviate human starvation and at the same time prevent over-fishing of oceans.
Collapse
Affiliation(s)
- Theo Wallimann
- Institute of Cell Biology, ETH Zurich, Zurich, Switzerland.
| | | | | |
Collapse
|
32
|
|
33
|
Santa KM. Treatment options for mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) syndrome. Pharmacotherapy 2011; 30:1179-96. [PMID: 20973690 DOI: 10.1592/phco.30.11.1179] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) syndrome is a rare neurodegenerative disease caused by the decreased ability of cells to produce sufficient energy in the form of adenosine 5'-triphosphate. Although it is one of the most common maternally inherited mitochondrial disorders, its exact incidence is unknown. Caused most frequently by an A-to-G point mutation at the 3243 position in the mitochondrial DNA, MELAS syndrome has a broad range of clinical manifestations and a highly variable course. The classic neurologic characteristics include encephalopathy, seizures, and stroke-like episodes. In addition to its neurologic manifestations, MELAS syndrome exhibits multisystem effects including cardiac conduction defects, diabetes mellitus, short stature, myopathy, and gastrointestinal disturbances. Unfortunately, no consensus guidelines outlining standard drug regimens exist for this syndrome. Many of the accepted therapies used in treating MELAS syndrome have been identified through a small number of clinical trials or isolated case reports. Currently, the drugs most often used include antioxidants and various vitamins aimed at minimizing the demands on the mitochondria and supporting and maximizing their function. Some of the most frequently prescribed agents include coenzyme Q(10), l-arginine, B vitamins, and levocarnitine. Although articles describing MELAS syndrome are available, few specifically target education for clinical pharmacists. This article will provide pharmacists with a practical resource to enhance their understanding of MELAS syndrome in order to provide safe and effective pharmaceutical care.
Collapse
Affiliation(s)
- Kristin M Santa
- Department of Pharmacy, Froedtert Hospital, Milwaukee, Wisconsin 53226, USA.
| |
Collapse
|
34
|
Tipton KD. Nutrition for acute exercise-induced injuries. ANNALS OF NUTRITION AND METABOLISM 2011; 57 Suppl 2:43-53. [PMID: 21346336 DOI: 10.1159/000322703] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND/AIMS Injuries are an unavoidable aspect of participation in physical activity. Little information about nutritional support for injuries exists. REVIEW Immediately following injury, wound healing begins with an inflammatory response. Excessive anti-inflammatory measures may impair recovery. Many injuries result in limb immobilization. Immobilization results in muscle loss due to increased periods of negative muscle protein balance. Oxidative capacity of muscle is also decreased. Nutrient and energy deficiencies should be avoided. Energy expenditure may be reduced during immobilization, but inflammation, wound healing and the energy cost of ambulation limit the reduction of energy expenditure. There is little rationale for increasing protein intake during immobilization. There is a theoretical rationale for leucine and omega-3 fatty acid supplementation to help reduce muscle atrophy. During rehabilitation and recovery from immobilization, increased activity, in particular resistance exercise will increase muscle protein synthesis and restore sensitivity to anabolic stimuli. Ample, but not excessive, protein and energy must be consumed to support muscle growth. During rehabilitation and recovery, nutritional needs are very much like those for any athlete desiring muscle growth. CONCLUSION Nutrition is important for optimal wound healing. The most important consideration is to avoid malnutrition and to apply a risk/benefit approach.
Collapse
Affiliation(s)
- Kevin D Tipton
- Sports, Health and Exercise Sciences Research Group, University of Stirling, Stirling, UK.
| |
Collapse
|
35
|
Exercise-induced, but not creatine-induced, decrease in intramyocellular lipid content improves insulin sensitivity in rats. J Nutr Biochem 2011; 22:1178-85. [PMID: 21333514 DOI: 10.1016/j.jnutbio.2010.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Revised: 09/23/2010] [Accepted: 10/01/2010] [Indexed: 11/23/2022]
Abstract
The effect of creatine supplementation, alone or in combination with exercise training, on insulin sensitivity, intramyocellular lipid content (IMCL) and fatty acid translocase (FAT)/CD36 content was investigated in rats fed a sucrose-rich cafeteria diet during 12 weeks. Five experimental conditions were CON, receiving normal pellets; CAF, fed the cafeteria diet; CAF(TR), fed the cafeteria diet together with exercise training in weeks 8-12 and CAF(CR) and CAF(CRT) that were analogous to CAF and CAF(TR), respectively, but which received daily 2.5% of creatine monohydrate. During intravenous glucose tolerance test, compared with CON, whole-body glucose tolerance was reduced in CAF and CAF(CR) but not in CAF(TR) and CAF(CRT). Insulin-stimulated glucose transport in perfused red gastrocnemius muscles was impaired in CAF and CAF(CR) but not in the trained groups. IMCL content in soleus and extensor digitorum longus muscles was higher in CAF than in CON, but not in CAF(TR), CAF(CR) and CAF(CRT). Compared with CON and CAF, FAT/CD36 protein content in m. soleus, was ~40% lower in CAF(CR), CAF(TR) and CAF(CRT). The fraction of fecal fat, as determined in a 3-week post hoc study, was 25% higher in CAF(CR) than in CON. Moreover, in CAF(CR), triglyceride concentration in blood and liver were significantly lower than in CAF. It is concluded that creatine supplementation in rats on a cafeteria diet inhibits IMCL accumulation via inhibition of gastrointestinal lipid absorption together with lower muscle FAT/CD36 content. Furthermore, exercise-induced but not creatine-induced reduction of IMCL is associated with improved insulin action on glucose transport in muscle cells.
Collapse
|
36
|
|
37
|
Kolling J, Wyse ATS. Creatine prevents the inhibition of energy metabolism and lipid peroxidation in rats subjected to GAA administration. Metab Brain Dis 2010; 25:331-8. [PMID: 20830606 DOI: 10.1007/s11011-010-9215-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Accepted: 07/06/2010] [Indexed: 11/30/2022]
Abstract
Guanidinoacetate methyltransferase (GAMT) deficiency is an inherited neurometabolic disorder, biochemically characterized by the tissue accumulation of guanidinoacetate (GAA). Affected patients present epilepsy and mental retardation whose etiopathogeny is unclear. Previous reports have shown that GAA alters brain energy metabolism and that creatine, which is depleted in patients with GAMT deficiency, can act as a neuroprotector; as such, in the present study we investigated the effect of creatine administration on some of the altered parameters of energy metabolism (complex II, Na(+),K(+)-ATPase and creatine kinase) and lipid peroxidation caused by intrastriatal administration of GAA in adult rats. Animals were pretreated for 7 days with daily intraperitonial administrations of creatine. Subsequently, these animals were divided into two groups: Group 1 (sham group), rats that suffered surgery and received saline; and group 2 (GAA-treated). Thirty min after GAA or saline, the animals were sacrificed and the striatum dissected out. Results showed that the administration of creatine was able to reverse the activities of complex II, Na(+),K(+)-ATPase and creatine kinase, as well as, the levels of thiobarbituric acid reactive substances (TBARS), an index of lipid peroxidation. These findings indicate that the energy metabolism deficit caused by GAA may be prevented by creatine, which probably acts as an antioxidant since it was able to prevent lipid peroxidation. These data may contribute, at least in part, to a better understanding of the mechanisms related to the energy deficit and oxidative stress observed in GAMT deficiency.
Collapse
Affiliation(s)
- Janaína Kolling
- Laboratório de Neuroproteção e Doenças Metabólicas, Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, Brazil
| | | |
Collapse
|
38
|
Lou JS, Weiss MD, Carter GT. Assessment and management of fatigue in neuromuscular disease. Am J Hosp Palliat Care 2010; 27:145-57. [PMID: 20190203 DOI: 10.1177/1049909109358420] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Fatigue is a common and potentially debilitating symptom of neuromuscular disease (NMD). Studies show that patients with NMD subjectively report increased levels of fatigue. Laboratory testing has demonstrated that patients with NMD show objective physiological signs of increased fatigue, with both central and peripheral components. To date, no treatment has been proven to be truly effective through evidence-based medicine. Thus, the clinician must use a multimodality approach to treating fatigue in patients with NMD. Management interventions are generally based on a sequential approach including treatment of comorbid factors, with the goal of maximizing physical and psychological functioning. This might include low-intensity exercise training, cognitive therapy, treatment of associated depression, correction of risk factors such as obesity, poor nutrition, and inactivity (deconditioning). Optimizing cardiopulmonary function is also critical and measures such as noninvasive, positive pressure ventilation may reduce fatigue in patients with NMD. Novel medications such as modafinil, a nonamphetamine stimulant, may be a helpful pharmacological treatment. Nutraceutical agents, such as creatine monohydrate, coenzyme Q10 (CoQ10), and alpha-lipoic acid, may also improve neuromuscular function and reduce fatigue.
Collapse
Affiliation(s)
- Jau-Shin Lou
- Oregon Health and Science University, Portland, USA
| | | | | |
Collapse
|
39
|
Aboussouan LS. Mechanisms of exercise limitation and pulmonary rehabilitation for patients with neuromuscular disease. Chron Respir Dis 2010; 6:231-49. [PMID: 19858353 DOI: 10.1177/1479972309345927] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Indications for exercise and pulmonary rehabilitation extend to neuromuscular diseases tough these conditions pose particular challenges given the associated skeletal muscle impairment and respiratory muscle dysfunction. These challenges are compounded by the variety of exercise prescriptions (aerobic, muscle strengthening, and respiratory muscle training) and the variety of neuromuscular disorders (muscular, motor neuron, motor nerve root, and neuromuscular transmission disorders). Studies support a level II evidence of effectiveness (i.e., likely to be effective) for a combination of aerobic exercise and strengthening exercises in muscular disorders, and for strengthening exercises in amyotrophic lateral sclerosis. The potential deleterious effects of work overload in the dystrophinopathies have not been confirmed in Becker muscular dystrophy. Adjunctive pharmacologic interventions (e.g., theophylline, steroids, PDE5 inhibitors, creatine), training recommendations (e.g., interval or lower intensity training) and supportive techniques (e.g., noninvasive ventilation, neuromuscular electrical stimulation, and diaphragm pacing) may result in more effective training but require more study before formal recommendations can be made. The exercise prescription should include avoidance of inspiratory muscle training in hypercapnia or low vital capacity, and should match the desired outcome (e.g., extremity training for task-specific performance, exercise training to enhance exercise performance, respiratory muscle training where respiratory muscle involvement contributes to the impairment).
Collapse
Affiliation(s)
- L S Aboussouan
- Cleveland Clinic Foundation, Respiratory Institute, Cleveland, OH 44195, USA.
| |
Collapse
|
40
|
A plasma signature of human mitochondrial disease revealed through metabolic profiling of spent media from cultured muscle cells. Proc Natl Acad Sci U S A 2010; 107:1571-5. [PMID: 20080599 DOI: 10.1073/pnas.0906039107] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Mutations in either the mitochondrial or nuclear genomes can give rise to respiratory chain disease (RCD), a large class of devastating metabolic disorders. Their clinical management is challenging, in part because we lack facile and accurate biomarkers to aid in diagnosis and in the monitoring of disease progression. Here we introduce a sequential strategy that combines biochemical analysis of spent media from cell culture with analysis of patient plasma to identify disease biomarkers. First, we applied global metabolic profiling to spotlight 32 metabolites whose uptake or secretion kinetics were altered by chemical inhibition of the respiratory chain in cultured muscle . These metabolites span a wide range of pathways and include lactate and alanine, which are used clinically as biomarkers of RCD. We next measured the cell culture-defined metabolites in human plasma to discover that creatine is reproducibly elevated in two independent cohorts of RCD patients, exceeding lactate and alanine in magnitude of elevation and statistical significance. In cell culture extracellular creatine was inversely related to the intracellular phosphocreatine:creatine ratio suggesting that the elevation of plasma creatine in RCD patients signals a low energetic state of tissues using the phosphocreatine shuttle. Our study identifies plasma creatine as a potential biomarker of human mitochondrial dysfunction that could be clinically useful. More generally, we illustrate how spent media from cellular models of disease may provide a window into the biochemical derangements in human plasma, an approach that could, in principle, be extended to a range of complex diseases.
Collapse
|
41
|
Tarnopolsky MA. Caffeine and Creatine Use in Sport. ANNALS OF NUTRITION AND METABOLISM 2010; 57 Suppl 2:1-8. [DOI: 10.1159/000322696] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
42
|
Orsucci D, Filosto M, Siciliano G, Mancuso M. Electron transfer mediators and other metabolites and cofactors in the treatment of mitochondrial dysfunction. Nutr Rev 2009; 67:427-38. [PMID: 19674340 DOI: 10.1111/j.1753-4887.2009.00221.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Mitochondrial disorders (MDs) are caused by impairment of the mitochondrial electron transport chain (ETC). The ETC is needed for oxidative phosphorylation, which provides the cell with the most efficient energy outcome in terms of ATP production. One of the pathogenic mechanisms of MDs is the accumulation of reactive oxygen species. Mitochondrial dysfunction and oxidative stress appear to also have a strong impact on the pathogenesis of neurodegenerative diseases and cancer. The treatment of MDs is still inadequate. Therapies that have been attempted include ETC cofactors, other metabolites secondarily decreased in MDs, antioxidants, and agents acting on lactic acidosis. However, the role of these dietary supplements in the treatment of the majority of MDs remains unclear. This article reviews the rationale for their use and their role in clinical practice in the context of MDs and other disorders involving mitochondrial dysfunction.
Collapse
Affiliation(s)
- Daniele Orsucci
- Department of Neuroscience, Neurological Clinic, University of Pisa, Italy
| | | | | | | |
Collapse
|
43
|
Sakkas GK, Schambelan M, Mulligan K. Can the use of creatine supplementation attenuate muscle loss in cachexia and wasting? Curr Opin Clin Nutr Metab Care 2009; 12:623-7. [PMID: 19741514 PMCID: PMC2905310 DOI: 10.1097/mco.0b013e328331de63] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE OF REVIEW Weight loss and low BMI due to an underlying illness have been associated with increased mortality, reduced functional capacity, and diminished quality of life. There is a need for well tolerated, long-term approaches to maintain body weight in patients with cachexia or wasting. The purpose of this review is to highlight the scientific and clinical evidence derived from the recent literature investigating the rationale for and potential medical use of creatine supplementation in patients with cachexia or wasting. RECENT FINDINGS Some studies have demonstrated that supplementation with creatine can increase creatine reserves in skeletal muscle and increase muscle mass and performance in various disease states that affect muscle size and function. The mechanisms underlying these effects are not clear. It has been suggested that creatine supplementation may increase intramuscular phosphocreatine stores and promote more rapid recovery of adenosine triphosphate levels following exercise, thus allowing users to exercise for longer periods or at higher intensity levels. Other hypothesized mechanisms include attenuation of proinflammatory cytokines, stimulation of satellite cell proliferation and upregulation of genes that promote protein synthesis and cell repair. SUMMARY Creatine is a generally well tolerated, low-cost, over-the-counter nutritional supplement that shows potential in improving lean body mass and functionality in patients with wasting diseases. However, placebo-controlled studies have shown variable effects, with improvements in some and not in others. Additional studies with longer follow-up are required to identify the populations that might benefit most from creatine supplementation.
Collapse
Affiliation(s)
- Giorgos K. Sakkas
- Department of Medicine, University of Thessaly, Greece
- Center for Research and Technology, Thessaly, Greece
| | - Morris Schambelan
- Department of Medicine, University of California, San Francisco, CA, USA
- Division of Endocrinology, San Francisco General Hospital, San Francisco, CA, USA
| | - Kathleen Mulligan
- Department of Medicine, University of California, San Francisco, CA, USA
- Division of Endocrinology, San Francisco General Hospital, San Francisco, CA, USA
| |
Collapse
|
44
|
Three weeks of creatine monohydrate supplementation affects dihydrotestosterone to testosterone ratio in college-aged rugby players. Clin J Sport Med 2009; 19:399-404. [PMID: 19741313 DOI: 10.1097/jsm.0b013e3181b8b52f] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVE This study investigated resting concentrations of selected androgens after 3 weeks of creatine supplementation in male rugby players. It was hypothesized that the ratio of dihydrotestosterone (DHT, a biologically more active androgen) to testosterone (T) would change with creatine supplementation. DESIGN Double-blind placebo-controlled crossover study with a 6-week washout period. SETTING Rugby Institute in South Africa. PARTICIPANTS College-aged rugby players (n = 20) volunteered for the study, which took place during the competitive season. INTERVENTIONS Subjects loaded with creatine (25 g/day creatine with 25 g/day glucose) or placebo (50 g/day glucose) for 7 days followed by 14 days of maintenance (5 g/day creatine with 25 g/day glucose or 30 g/day glucose placebo). MAIN OUTCOME MEASURES Serum T and DHT were measured and ratio calculated at baseline and after 7 days and 21 days of creatine supplementation (or placebo). Body composition measurements were taken at each time point. RESULTS After 7 days of creatine loading, or a further 14 days of creatine maintenance dose, serum T levels did not change. However, levels of DHT increased by 56% after 7 days of creatine loading and remained 40% above baseline after 14 days maintenance (P < 0.001). The ratio of DHT:T also increased by 36% after 7 days creatine supplementation and remained elevated by 22% after the maintenance dose (P < 0.01). CONCLUSIONS Creatine supplementation may, in part, act through an increased rate of conversion of T to DHT. Further investigation is warranted as a result of the high frequency of individuals using creatine supplementation and the long-term safety of alterations in circulating androgen composition. STATEMENT OF CLINICAL RELEVANCE: Although creatine is a widely used ergogenic aid, the mechanisms of action are incompletely understood, particularly in relation to dihydrotestosterone, and therefore the long-term clinical safety cannot be guaranteed.
Collapse
|
45
|
CRASSOUS BRIGITTE, RICHARD-BULTEAU HÉLÈNE, DELDICQUE LOUISE, SERRURIER BERNARD, PASDELOUP MARIELLE, FRANCAUX MARC, BIGARD XAVIER, KOULMANN NATHALIE. Lack of Effects of Creatine on the Regeneration of Soleus Muscle after Injury in Rats. Med Sci Sports Exerc 2009; 41:1761-9. [DOI: 10.1249/mss.0b013e31819f75cb] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
46
|
Luong MW, Rabkin SW. Verapamil but not calpain or creatine alters arsenate-induced cardiac cell death. Toxicol Ind Health 2009; 25:169-76. [DOI: 10.1177/0748233709105593] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The objective of this study was to examine the potential of arsenate to induce cardiomyocyte cell death and to explore the cellular mechanisms of arsenate toxicity. Isolated cardiomyocytes in culture from embryonic chick hearts were treated with a pentavalent arsenic species (H3AsO4) or arsenate. Arsenate produced a significant ( P < 0.01) concentration-dependent increase in cell death with an EC50 about 1 mM. Cardiomyocytes manifested a loss of actin structure, reduced size, and damaged nuclei. Creatine 0.1–100 uM did not significantly modify arsenate-induced cell death. In contrast, verapamil, 0.01–1 uM, produced a significant concentration-dependent accentuation of arsenate-induced cell death. The effect of verapamil was evident at low concentrations of arsenate, which produced only a small increase in cell death, and at high concentrations of arsenate, which induced a large amount of cell death. Verapamil alone did not alter cardiomyocyte cell death. By comparison, calpain inhibitor II did not modify arsenate-induced cardiomyocyte cell death. These data suggest that cardiomyocytes are vulnerable to the effects of verapamil to increase the cellular toxicity of arsenate. Two potential cellular mechanisms of arsenate toxicity, however, are likely not involved in arsenate toxicity namely calpain activation and reduction of creatine phosphate production.
Collapse
Affiliation(s)
- MW Luong
- Department of Medicine (Cardiology), University of British Columbia, Vancouver, British Columbia, Canada
| | - SW Rabkin
- Department of Medicine (Cardiology), University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
47
|
Abstract
Metabolic myopathies are inborn errors of metabolism that result in impaired energy production due to defects in glycogen, lipid, mitochondrial, and possibly adenine nucleotide metabolism. Fatty acid oxidation defects (FAOD), glycogen storage disease, and mitochondrial myopathies represent the 3 main groups of disorders, and some consider myoadenylate deaminase (AMPD1 deficiency) to be a metabolic myopathy. Clinically, a variety of neuromuscular presentations are seen at different ages of life. Newborns and infants commonly present with hypotonia and multisystem involvement (liver and brain), whereas onset later in life usually presents with exercise intolerance with or without progressive muscle weakness and myoglobinuria. In general, the glycogen storage diseases result in high-intensity exercise intolerance, whereas the FAODs and the mitochondrial myopathies manifest predominately during endurance-type activity or under fasted or other metabolically stressful conditions. The clinical examination is often normal, and testing requires various combinations of exercise stress testing, serum creatine kinase activity and lactate concentration determination, urine organic acids, muscle biopsy, neuroimaging, and specific genetic testing for the diagnosis of a specific metabolic myopathy. Prenatal screening is available in many countries for several of the FAODs through liquid chromatography-tandem mass spectrometry. Early identification of these conditions with lifestyle measures, nutritional intervention, and cofactor treatment is important to prevent or delay the onset of muscle weakness and to avoid potential life-threatening complications such as rhabdomyolysis with resultant renal failure or hepatic failure. This article will review the key clinical features, diagnostic tests, and treatment recommendations for the more common metabolic myopathies, with an emphasis on mitochondrial myopathies.
Collapse
|
48
|
Gualano B, Artioli GG, Poortmans JR, Lancha Junior AH. Exploring the therapeutic role of creatine supplementation. Amino Acids 2009; 38:31-44. [PMID: 19253023 DOI: 10.1007/s00726-009-0263-6] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Accepted: 02/11/2009] [Indexed: 12/12/2022]
Abstract
Creatine (Cr) plays a central role in energy provision through a reaction catalyzed by phosphorylcreatine kinase. Furthermore, this amine enhances both gene expression and satellite cell activation involved in hypertrophic response. Recent findings have indicated that Cr supplementation has a therapeutic role in several diseases characterized by atrophic conditions, weakness, and metabolic disturbances (i.e., in the muscle, bone, lung, and brain). Accordingly, there has been an evidence indicating that Cr supplementation is capable of attenuating the degenerative state in some muscle disorders (i.e., Duchenne and inflammatory myopathies), central nervous diseases (i.e., Parkinson's, Huntington's, and Alzheimer's), and bone and metabolic disturbances (i.e., osteoporosis and type II diabetes). In light of this, Cr supplementation could be used as a therapeutic tool for the elderly. The aim of this review is to summarize the main studies conducted in this field and to highlight the scientific and clinical perspectives of this promising therapeutic supplement.
Collapse
Affiliation(s)
- Bruno Gualano
- Laboratory of Applied Nutrition and Metabolism, School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil.
| | | | | | | |
Collapse
|
49
|
Wyss M, Braissant O, Pischel I, Salomons GS, Schulze A, Stockler S, Wallimann T. Creatine and creatine kinase in health and disease--a bright future ahead? Subcell Biochem 2007; 46:309-34. [PMID: 18652084 DOI: 10.1007/978-1-4020-6486-9_16] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Many links are reported or suspected between the functioning of creatine, phosphocreatine, the creatine kinase isoenzymes or the creatine biosynthesis enzymes on one hand, and health or disease on the other hand. The aim of the present book was to outline our current understanding on many of these links. In this chapter, we summarize the main messages and conclusions presented in this book. In addition, we refer to a number of recent publications that highlight the pleiotropy in physiological functions of creatine and creatine kinase, and which suggest that numerous discoveries on new functions of this system are still ahead of us. Finally, we present our views on the most promising future avenues of research to deepen our knowledge on creatine and creatine kinase. In particular, we elaborate on how state-of-the-art high-throughput analytical ("omics") technologies and systems biology approaches may be used successfully to unravel the complex network of interdependent physiological functions related to creatine and creatine kinase.
Collapse
Affiliation(s)
- Markus Wyss
- DSM Nutritional Products Ltd., Biotechnology R&D, Bldg. 203/17B, P.O. Box 3255, CH-4002 Basel, Switzerland
| | | | | | | | | | | | | |
Collapse
|
50
|
Wallimann T. Introduction--creatine: cheap ergogenic supplement with great potential for health and disease. Subcell Biochem 2007; 46:1-16. [PMID: 18652069 DOI: 10.1007/978-1-4020-6486-9_1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Affiliation(s)
- Theo Wallimann
- Institute of Cell Biology, ETH Zurich, Hönggerberg HPM-D24.1, Schafmattstrasse 18, CH-8093 Zurich, Switzerland
| |
Collapse
|