1
|
Bruner E, Holloway R, Baab KL, Rogers MJ, Semaw S. The endocast from Dana Aoule North (DAN5/P1): A 1.5 million year-old human braincase from Gona, Afar, Ethiopia. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2023; 181:206-215. [PMID: 36810873 DOI: 10.1002/ajpa.24717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/09/2022] [Accepted: 02/06/2023] [Indexed: 02/24/2023]
Abstract
The nearly complete cranium DAN5/P1 was found at Gona (Afar, Ethiopia), dated to 1.5-1.6 Ma, and assigned to the species Homo erectus. Its size is, nonetheless, particularly small for the known range of variation of this taxon, and the cranial capacity has been estimated as 598 cc. In this study, we analyzed a reconstruction of its endocranial cast, to investigate its paleoneurological features. The main anatomical traits of the endocast were described, and its morphology was compared with other fossil and modern human samples. The endocast shows most of the traits associated with less encephalized human taxa, like narrow frontal lobes and a simple meningeal vascular network with posterior parietal branches. The parietal region is relatively tall and rounded, although not especially large. Based on our set of measures, the general endocranial proportions are within the range of fossils included in the species Homo habilis or in the genus Australopithecus. Similarities with the genus Homo include a more posterior position of the frontal lobe relative to the cranial bones, and the general endocranial length and width when size is taken into account. This new specimen extends the known brain size variability of Homo ergaster/erectus, while suggesting that differences in gross brain proportions among early human species, or even between early humans and australopiths, were absent or subtle.
Collapse
Affiliation(s)
- Emiliano Bruner
- Programa de Paleobiología, Centro Nacional de Investigación sobre la Evolución Humana, Burgos, Spain
| | - Ralph Holloway
- Department of Anthropology, Columbia University, New York, New York, USA
| | - Karen L Baab
- Department of Anatomy, Midwestern University, Glendale, Arizona, USA
| | - Michael J Rogers
- Department of Anthropology, Southern Connecticut State University, New Haven, Connecticut, USA
| | - Sileshi Semaw
- Programa de Arqueología, Centro Nacional de Investigación sobre la Evolución Humana, Burgos, Spain.,Stone Age Institute, Gosport, Indiana, USA
| |
Collapse
|
2
|
Bobe R, Wood B. Estimating origination times from the early hominin fossil record. Evol Anthropol 2021; 31:92-102. [PMID: 34662482 DOI: 10.1002/evan.21928] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/25/2021] [Accepted: 09/30/2021] [Indexed: 11/09/2022]
Abstract
The age of the earliest recovered fossil evidence of a hominin taxon is all too often equated with that taxon's origination. However, the earliest known fossil record nearly always postdates, sometimes by a substantial period of time, the true origination of a taxon. Here we evaluate the first appearance records of the earliest potential hominins (Sahelanthropus, Ardipithecus, Orrorin), as well as of the genera Australopithecus, Homo, and Paranthropus, to illustrate the considerable uncertainty regarding the actual timing of origin of these taxa. By placing confidence intervals on the first appearance records of early hominin taxa, we can better evaluate patterns of hominin diversity, turnover, and potential correlations with climatic and environmental changes.
Collapse
Affiliation(s)
- René Bobe
- Primate Models for Behavioural Evolution Lab, Institute of Human Sciences, School of Anthropology, University of Oxford, Oxford, UK.,Gorongosa National Park, Sofala, Mozambique.,Interdisciplinary Center for Archaeology and Evolution of Human Behavior (ICArEHB), Universidade do Algarve, Faro, Portugal
| | - Bernard Wood
- Center for the Advanced Study of Human Paleobiology, George Washington University, Washington, District of Columbia, USA
| |
Collapse
|
3
|
Athreya S, Hopkins A. Conceptual issues in hominin taxonomy: Homo heidelbergensis and an ethnobiological reframing of species. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2021; 175 Suppl 72:4-26. [PMID: 34117636 DOI: 10.1002/ajpa.24330] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 12/29/2022]
Abstract
Efforts to name and classify Middle Pleistocene Homo, often referred to as "Homo heidelbergensis" are hampered by confusing patterns of morphology but also by conflicting paleoanthropological ideologies that are embedded in approaches to hominin taxonomy, nomenclature, and the species concept. We deconstruct these issues to show how the field's search for a "real" species relies on strict adherence to pre-Darwinian essentialist naming rules in a post-typological world. We then examine Middle Pleistocene Homo through the framework of ethnobiology, which examines on how Indigenous societies perceive, classify, and name biological organisms. This research reminds us that across human societies, taxonomies function to (1) identify and classify organisms based on consensus pattern recognition and (2) construct a stable nomenclature for effective storage, retrieval and communication of information. Naming Middle Pleistocene Homo as a "real" species cannot be verified with the current data; and separating regional groups into distinct evolutionary lineages creates taxa that are not defined by readily perceptible or universally salient differences. Based on ethnobiological studies of this kind of patterning, referring to these hominins above the level of the species according to their generic category with modifiers (e.g., "European Middle Pleistocene Homo") is consistent with observed human capabilities for cognitive differentiation, is both necessary and sufficient given the current data, and will allow for the most clear communication across ideologies going forward.
Collapse
Affiliation(s)
- Sheela Athreya
- Liberal Arts Program, Texas A&M University-Qatar, Doha, Qatar.,Department of Anthropology, Texas A&M University, College Station, Texas, USA
| | - Allison Hopkins
- Department of Anthropology, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
4
|
de Ruiter DJ, Churchill S, Hawks J, Berger L. Late Australopiths and the Emergence of Homo. ANNUAL REVIEW OF ANTHROPOLOGY 2017. [DOI: 10.1146/annurev-anthro-102116-041734] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
New fossil discoveries and new analyses increasingly blur the lines between Australopithecus and Homo, changing scientific ideas about the transition between the two genera. The concept of the genus itself remains an unsettled issue, though recent fossil discoveries and theoretical advances, alongside developments in phylogenetic reconstruction and hypothesis testing, are helping us approach a resolution. A review of the latest discoveries and research reveals that (a) despite the recent recovery of key fossil specimens, the antiquity of the genus Homo remains uncertain; (b) although there exist several australopith candidate ancestors for the genus Homo, there is little consensus about which of these, if any, represents the actual ancestor; and (c) potential convergent evolution (homoplasy) in adaptively significant features in late australopiths and basal members of the Homo clade, combined with probable reticulate evolution, makes it currently impossible to identify the direct ancestor of Homo erectus.
Collapse
Affiliation(s)
- Darryl J. de Ruiter
- Department of Anthropology, Texas A&M University, College Station, Texas 77843
- Evolutionary Studies Institute and Centre for Excellence in PalaeoSciences, University of the Witwatersrand, Wits 2050, South Africa
| | - S.E. Churchill
- Evolutionary Studies Institute and Centre for Excellence in PalaeoSciences, University of the Witwatersrand, Wits 2050, South Africa
- Department of Evolutionary Anthropology, Duke University, Durham, North Carolina 27708
| | - J. Hawks
- Evolutionary Studies Institute and Centre for Excellence in PalaeoSciences, University of the Witwatersrand, Wits 2050, South Africa
- Department of Anthropology, University of Wisconsin, Madison, Wisconsin 53706
| | - L.R. Berger
- Evolutionary Studies Institute and Centre for Excellence in PalaeoSciences, University of the Witwatersrand, Wits 2050, South Africa
- School of Geosciences, University of the Witwatersrand, Wits 2050, South Africa
| |
Collapse
|
5
|
Boughner JC. Implications of Vertebrate Craniodental Evo-Devo for Human Oral Health. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2017; 328:321-333. [PMID: 28251806 DOI: 10.1002/jez.b.22734] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 12/21/2016] [Accepted: 01/30/2017] [Indexed: 12/12/2022]
Abstract
Highly processed diets eaten by postindustrial modern human populations coincide with higher frequencies of third molar impaction, malocclusion, and temporomandibular joint disorders that affect millions of people worldwide each year. Current treatments address symptoms, not causes, because the multifactorial etiologies of these three concerns mask which factors incline certain people to malocclusion, impaction, and/or joint issues. Deep scientific curiosity about the origins of jaws and dentitions continues to yield rich insights about the developmental genetic mechanisms that underpin healthy craniodental morphogenesis and integration. Mounting evidence from evolution and development (Evo-Devo) studies suggests that function is another mechanism important to healthy craniodental integration and fit. Starting as early as weaning, softer diets and thus lower bite forces appear to relax or disrupt integration of oral tissues, alter development and growth, and catalyze impaction, malocclusion, and jaw joint disorders. How developing oral tissues respond to bite forces remains poorly understood, but biomechanical feedback seems to alter balances of local bone resorption and deposition at the tooth-bone interface as well as affect tempos and amounts of facial outgrowth. Also, behavioral changes in jaw function and parafunction contribute to degeneration and pain in joint articular cartilages and masticatory muscles. The developmental genetic contribution to craniodental misfits and disorders is undeniable but still unclear; however, at present, human diet and jaw function remain important and much more actionable clinical targets. New Evo-Devo studies are needed to explain how function interfaces with craniodental phenotypic plasticity, variation, and evolvability to yield a spectrum of healthy and mismatched dentitions and jaws.
Collapse
Affiliation(s)
- Julia C Boughner
- Department of Anatomy and Cell Biology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
6
|
Abstract
We review the fossil and genetic evidence that relate to evolution in the genus Homo. We focus on the origin of Homo and on the evidence for taxonomic diversity at the beginning of the evolutionary history of Homo and in the last 200,000 years. We set out the arguments for recognizing a second early Homo taxon, Homo rudolfensis, and the arguments for and against including Homo habilis sensu stricto and Homo rudolfensis within Homo. We end by reviewing recent genomic evolution within Homo. The challenge of the upcoming decades is to meld innovations in molecular genetic methods and technology with evidence from the fossil record to generate hypotheses about the developmental bases of the phenotypic and behavioral developments we see within the genus Homo.
Collapse
Affiliation(s)
- Bernard Wood
- Center for the Advanced Study of Hominid Paleobiology and
| | - Jennifer Baker
- Center for the Advanced Study of Hominid Paleobiology and
- Hominid Paleobiology Graduate Program, Department of Anthropology, George Washington University, Washington, DC 20052
| |
Collapse
|
7
|
Comparisons of Early Pleistocene Skulls from East Africa and the Georgian Caucasus: Evidence Bearing on the Origin and Systematics of Genus Homo. ACTA ACUST UNITED AC 2009. [DOI: 10.1007/978-1-4020-9980-9_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
8
|
Lieberman DE, Bramble DM, Raichlen DA, Shea JJ. Brains, Brawn, and the Evolution of Human Endurance Running Capabilities. VERTEBRATE PALEOBIOLOGY AND PALEOANTHROPOLOGY 2009. [DOI: 10.1007/978-1-4020-9980-9_8] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
9
|
|