1
|
Navarro-López JD, Contreras A, Touyarot K, Herrero AI, Venero C, Cambon K, Gruart A, Delgado-García JM, Sandi C, Jiménez-Díaz L. Acquisition-dependent modulation of hippocampal neural cell adhesion molecules by associative motor learning. Front Neuroanat 2022; 16:1082701. [PMID: 36620194 PMCID: PMC9811386 DOI: 10.3389/fnana.2022.1082701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
It is widely accepted that some types of learning involve structural and functional changes of hippocampal synapses. Cell adhesion molecules neural cell adhesion molecule (NCAM), its polysialylated form polysialic acid to NCAM (PSA-NCAM), and L1 are prominent modulators of those changes. On the other hand, trace eyeblink conditioning, an associative motor learning task, requires the active participation of hippocampal circuits. However, the involvement of NCAM, PSA-NCAM, and L1 in this type of learning is not fully known. Here, we aimed to investigate the possible time sequence modifications of such neural cell adhesion molecules in the hippocampus during the acquisition of a trace eyeblink conditioning. To do so, the hippocampal expression of NCAM, PSA-NCAM, and L1 was assessed at three different time points during conditioning: after one (initial acquisition), three (partial acquisition), and six (complete acquisition) sessions of the conditioning paradigm. The conditioned stimulus (CS) was a weak electrical pulse separated by a 250-ms time interval from the unconditioned stimuli (US, a strong electrical pulse). An acquisition-dependent regulation of these adhesion molecules was found in the hippocampus. During the initial acquisition of the conditioning eyeblink paradigm (12 h after 1 and 3 days of training), synaptic expression of L1 and PSA-NCAM was transiently increased in the contralateral hippocampus to the paired CS-US presentations, whereas, when the associative learning was completed, such increase disappeared, but a marked and bilateral upregulation of NCAM was found. In conclusion, our findings show a specific temporal pattern of hippocampal CAMs expression during the acquisition process, highlighting the relevance of NCAM, PSA-NCAM, and L1 as learning-modulated molecules critically involved in remodeling processes underlying associative motor-memories formation.
Collapse
Affiliation(s)
- Juan D. Navarro-López
- Laboratory of Neurophysiology and Behavior, Facultad de Medicina de Ciudad Real, Universidad de Castilla-La Mancha, Ciudad Real, Spain
| | - Ana Contreras
- Laboratory of Neurophysiology and Behavior, Facultad de Medicina de Ciudad Real, Universidad de Castilla-La Mancha, Ciudad Real, Spain
| | - Katia Touyarot
- INRAE, Bordeaux INP, NutriNeuro, University of Bordeaux, Bordeaux, France
| | - Ana I. Herrero
- Department of Psychobiology, Universidad Nacional de Educación a Distancia, Madrid, Spain
| | - César Venero
- Department of Psychobiology, Universidad Nacional de Educación a Distancia, Madrid, Spain
| | - Karine Cambon
- Direction de la Recherche Fondamentale (DRF), Institut François Jacob, MIRCen, Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Fontenay-aux-Roses, France
| | - Agnés Gruart
- Division of Neurosciences, Pablo de Olavide University, Seville, Spain
| | | | - Carmen Sandi
- Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Lydia Jiménez-Díaz
- Laboratory of Neurophysiology and Behavior, Facultad de Medicina de Ciudad Real, Universidad de Castilla-La Mancha, Ciudad Real, Spain,*Correspondence: Lydia Jiménez-Díaz,
| |
Collapse
|
2
|
Glycoproteomic analysis of the changes in protein N-glycosylation during neuronal differentiation in human-induced pluripotent stem cells and derived neuronal cells. Sci Rep 2021; 11:11169. [PMID: 34045517 PMCID: PMC8160270 DOI: 10.1038/s41598-021-90102-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/04/2021] [Indexed: 11/09/2022] Open
Abstract
N-glycosylation of glycoproteins, a major post-translational modification, plays a crucial role in various biological phenomena. In central nervous systems, N-glycosylation is thought to be associated with differentiation and regeneration; however, the state and role of N-glycosylation in neuronal differentiation remain unclear. Here, we conducted sequential LC/MS/MS analyses of tryptic digest, enriched glycopeptides, and deglycosylated peptides of proteins derived from human-induced pluripotent stem cells (iPSCs) and iPSC-derived neuronal cells, which were used as a model of neuronal differentiation. We demonstrate that the production profiles of many glycoproteins and their glycoforms were altered during neuronal differentiation. Particularly, the levels of glycoproteins modified with an N-glycan, consisting of five N-acetylhexosamines, three hexoses, and a fucose (HN5H3F), increased in dopaminergic neuron-rich cells (DAs). The N-glycan was deduced to be a fucosylated and bisected biantennary glycan based on product ion spectra. Interestingly, the HN5H3F-modified proteins were predicted to be functionally involved in neural cell adhesion, axon guidance, and the semaphorin-plexin signaling pathway, and protein modifications were site-selective and DA-selective regardless of protein production levels. Our integrated method for glycoproteome analysis and resultant profiles of glycoproteins and their glycoforms provide valuable information for further understanding the role of N-glycosylation in neuronal differentiation and neural regeneration.
Collapse
|
3
|
Kühnle A, Veelken R, Galuska CE, Saftenberger M, Verleih M, Schuppe HC, Rudloff S, Kunz C, Galuska SP. Polysialic acid interacts with lactoferrin and supports its activity to inhibit the release of neutrophil extracellular traps. Carbohydr Polym 2019; 208:32-41. [DOI: 10.1016/j.carbpol.2018.12.033] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 12/11/2018] [Accepted: 12/11/2018] [Indexed: 01/13/2023]
|
4
|
Bhide GP, Zapater JL, Colley KJ. Autopolysialylation of polysialyltransferases is required for polysialylation and polysialic acid chain elongation on select glycoprotein substrates. J Biol Chem 2017; 293:701-716. [PMID: 29183999 DOI: 10.1074/jbc.ra117.000401] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 11/21/2017] [Indexed: 11/06/2022] Open
Abstract
Polysialic acid (polySia) is a large glycan polymer that is added to some glycoproteins by two polysialyltransferases (polySTs), ST8Sia-II and ST8Sia-IV. As polySia modulates cell adhesion and signaling, immune cell function, and tumor metastasis, it is of interest to determine how the polySTs recognize their select substrates. We have recently identified residues within the ST8Sia-IV polybasic region (PBR) that are required for neural cell adhesion molecule (NCAM) recognition and subsequent polysialylation. Here, we compared the PBR sequence requirements for NCAM, neuropilin-2 (NRP-2), and synaptic cell adhesion molecule 1 (SynCAM 1) for polysialylation by their respective polySTs. We found that the polySTs use unique but overlapping sets of PBR residues for substrate recognition, that the NCAM-recognizing PBR sites in ST8Sia-II and ST8Sia-IV include homologous residues, but that the ST8Sia-II site is larger, and that fewer PBR residues are involved in NRP-2 and SynCAM 1 recognition than in NCAM recognition. Noting that the two sites for ST8Sia-IV autopolysialylation flank the PBR, we evaluated the role of PBR residues in autopolysialylation and found that the requirements for polyST autopolysialylation and substrate polysialylation overlap. These data together with the evaluation of the polyST autopolysialylation mechanism enabled us to further identify PBR residues potentially playing dual roles in substrate recognition and in polySia chain polymerization. Finally, we found that ST8Sia-IV autopolysialylation is required for NRP-2 polysialylation and that ST8Sia-II autopolysialylation promotes the polymerization of longer polySia chains on SynCAM 1, suggesting a critical role for polyST autopolysialylation in substrate selection and polySia chain elongation.
Collapse
Affiliation(s)
- Gaurang P Bhide
- From the Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60607
| | - Joseph L Zapater
- From the Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60607
| | - Karen J Colley
- From the Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60607
| |
Collapse
|
5
|
Galuska CE, Lütteke T, Galuska SP. Is Polysialylated NCAM Not Only a Regulator during Brain Development But also during the Formation of Other Organs? BIOLOGY 2017; 6:biology6020027. [PMID: 28448440 PMCID: PMC5485474 DOI: 10.3390/biology6020027] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 04/24/2017] [Accepted: 04/24/2017] [Indexed: 11/16/2022]
Abstract
In mammals several cell adhesion molecules are involved during the pre- and postnatal development of all organ systems. A very prominent member of this family is the neural cell adhesion molecule (NCAM). Interestingly, NCAM can be a target for a special form of posttranslational modification: polysialylation. Whereas nearly all extracellular proteins bear mono-sialic acid residues, only a very small group can be polysialylated. Polysialic acid is a highly negatively-charged sugar polymer and can comprise more than 90 sialic acid residues in postnatal mouse brains increasing dramatically the hydrodynamic radius of their carriers. Thus, adhesion and communication processes on cell surfaces are strongly influenced allowing, e.g., the migration of neuronal progenitor cells. In the developing brain the essential role of polysialylated NCAM has been demonstrated in many studies. In comparison to the neuronal system, however, during the formation of other organs the impact of the polysialylated form of NCAM is not well characterized and the number of studies is limited so far. This review summarizes these observations and discusses possible roles of polysialylated NCAM during the development of organs other than the brain.
Collapse
Affiliation(s)
- Christina E Galuska
- Department of Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany.
| | - Thomas Lütteke
- ITech Progress GmbH, Donnersbergweg 4, 67059 Ludwigshafen, Germany.
| | - Sebastian P Galuska
- Department of Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany.
| |
Collapse
|
6
|
Bhide GP, Colley KJ. Sialylation of N-glycans: mechanism, cellular compartmentalization and function. Histochem Cell Biol 2017; 147:149-174. [PMID: 27975143 PMCID: PMC7088086 DOI: 10.1007/s00418-016-1520-x] [Citation(s) in RCA: 164] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2016] [Indexed: 12/18/2022]
Abstract
Sialylated N-glycans play essential roles in the immune system, pathogen recognition and cancer. This review approaches the sialylation of N-glycans from three perspectives. The first section focuses on the sialyltransferases that add sialic acid to N-glycans. Included in the discussion is a description of these enzymes' glycan acceptors, conserved domain organization and sequences, molecular structure and catalytic mechanism. In addition, we discuss the protein interactions underlying the polysialylation of a select group of adhesion and signaling molecules. In the second section, the biosynthesis of sialic acid, CMP-sialic acid and sialylated N-glycans is discussed, with a special emphasis on the compartmentalization of these processes in the mammalian cell. The sequences and mechanisms maintaining the sialyltransferases and other glycosylation enzymes in the Golgi are also reviewed. In the final section, we have chosen to discuss processes in which sialylated glycans, both N- and O-linked, play a role. The first part of this section focuses on sialic acid-binding proteins including viral hemagglutinins, Siglecs and selectins. In the second half of this section, we comment on the role of sialylated N-glycans in cancer, including the roles of β1-integrin and Fas receptor N-glycan sialylation in cancer cell survival and drug resistance, and the role of these sialylated proteins and polysialic acid in cancer metastasis.
Collapse
Affiliation(s)
- Gaurang P Bhide
- Department of Biochemistry and Molecular Genetics, College of Medicine, The University of Illinois at Chicago, 900 S. Ashland Avenue, MC669, Chicago, IL, 60607, USA
| | - Karen J Colley
- Department of Biochemistry and Molecular Genetics, College of Medicine, The University of Illinois at Chicago, 900 S. Ashland Avenue, MC669, Chicago, IL, 60607, USA.
| |
Collapse
|
7
|
Luke MPS, LeVatte TL, Rutishauser U, Tremblay F, Clarke DB. Polysialylated Neural Cell Adhesion Molecule Protects Against Light-Induced Retinal Degeneration. Invest Ophthalmol Vis Sci 2016; 57:5066-5075. [PMID: 27661859 PMCID: PMC6012193 DOI: 10.1167/iovs.16-19499] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Purpose We previously demonstrated that neural cell adhesion molecule (NCAM) plays an important role in supporting the survival of injured retinal ganglion cells. In the current study, we used light-induced retinal degeneration (LIRD) as a model to investigate whether NCAM plays a functional role in neuroprotection and whether NCAM influences p75NTR signaling in modulating retinal cell survival. Methods Retinas from wild-type (WT) and NCAM deficient (−/−) mice were tested by electroretinogram before and after LIRD, and changes in the protein expressions of NCAM, polysialic acid (PSA)-NCAM, p75NTR, and active caspase 3 were measured by immunoblot from 0 to 4 days after light induction. The effects of NCAM and PSA-NCAM on p75NTR were examined by intraocular injections of the p75NTR function-blocking antibody and/or the removal of PSA with endoneuraminidase-N prior to LIRD. Results In WT mice, low levels of active caspase 3 activation were detected on the first day, followed by increases up to 4 days after LIRD. Conversely, in NCAM−/− mice, higher cleaved caspase 3 levels along with rapid reductions in electroretinogram amplitudes were found earlier at day 1, followed by reduced levels by day 4. The removal of PSA prior to LIRD induced earlier onset of retinal cell death, an effect delayed by the coadministration of endoneuraminidase-N and the p75NTR function-blocking antibody antiserum. Conclusions These results indicate that NCAM protects WT retinas from LIRD; furthermore, the protective effect of NCAM is, at least in part, attributed to its effects on p75NTR.
Collapse
Affiliation(s)
- Margaret Po-Shan Luke
- Department of Medical Neuroscience, Dalhousie University, Life Science Research Institute, Halifax, Nova Scotia, Canada
| | - Terry L LeVatte
- Department of Medical Neuroscience, Dalhousie University, Life Science Research Institute, Halifax, Nova Scotia, Canada
| | - Urs Rutishauser
- Cellular and Developmental Neuroscience, Department of Cell Biology, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, New York, United States
| | - François Tremblay
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada 4Department of Ophthalmology & Visual Sciences, Dalhousie University, Halifax, Nova Scotia, Canada
| | - David B Clarke
- Department of Medical Neuroscience, Dalhousie University, Life Science Research Institute, Halifax, Nova Scotia, Canada 4Department of Ophthalmology & Visual Sciences, Dalhousie University, Halifax, Nova Scotia, Canada 5Department of Surgery (Neurosurgery), Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
8
|
Monosaccharide profiling of silkworm (Bombyx mori L.) nervous system during development and aging. INVERTEBRATE NEUROSCIENCE 2016; 16:8. [DOI: 10.1007/s10158-016-0191-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 06/13/2016] [Indexed: 12/23/2022]
|
9
|
Kaese M, Galuska CE, Simon P, Braun BC, Cabrera-Fuentes HA, Middendorff R, Wehrend A, Jewgenow K, Galuska SP. Polysialylation takes place in granulosa cells during apoptotic processes of atretic tertiary follicles. FEBS J 2015; 282:4595-606. [PMID: 26392163 DOI: 10.1111/febs.13519] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 08/14/2015] [Accepted: 09/16/2015] [Indexed: 11/30/2022]
Abstract
In the neuronal system, polysialic acid (polySia) is known to be involved in several cellular processes such as the modulation of cell-cell interactions. This highly negatively-charged sugar moiety is mainly present as a post-translational modification of the neural cell adhesion molecule (NCAM). More than 20 years ago, differently glycosylated forms of NCAM were detected in the ovaries. However, the exact isoform of NCAM, as well as its biological function, remained unknown. Our analysis revealed that granulosa cells of feline tertiary follicles express the polysialylated form of NCAM-140. Unexpectedly, polySia was only expressed in the granulosa layers of atretic follicles and not of healthy follicles. By contrast, only the un-polysialylated form of NCAM was present on the membrane of granulosa cells of healthy follicles. To study a possible cellular function of polySia in feline follicles, a primary granulosa cell culture model was used. Interestingly, loss of polySia leads to a significant inhibition of apoptosis, demonstrating that polySia is involved during atretic processes in granulosa cells. Thus, polySia might not only directly influence regeneration processes as shown, for example, in the neuronal system, but also apoptosis.
Collapse
Affiliation(s)
- Miriam Kaese
- Institute of Biochemistry, Medical Faculty, Justus-Liebig-University, Giessen, Germany
| | - Christina E Galuska
- Institute of Biochemistry, Medical Faculty, Justus-Liebig-University, Giessen, Germany
| | - Peter Simon
- Institute of Biochemistry, Medical Faculty, Justus-Liebig-University, Giessen, Germany.,Institute of Anatomy and Cell Biology, Medical Faculty, Justus-Liebig-University, Giessen, Germany
| | - Beate C Braun
- Leibniz Institute for Zoo and Wildlife Research (IZW), Berlin, Germany
| | - Hector A Cabrera-Fuentes
- Institute of Biochemistry, Medical Faculty, Justus-Liebig-University, Giessen, Germany.,Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore, Singapore
| | - Ralf Middendorff
- Institute of Anatomy and Cell Biology, Medical Faculty, Justus-Liebig-University, Giessen, Germany
| | - Axel Wehrend
- Clinic of Obstetrics, Gynecology and Andrology for Small and Large Animals, Justus-Liebig-University, Giessen, Germany
| | - Katarina Jewgenow
- Leibniz Institute for Zoo and Wildlife Research (IZW), Berlin, Germany
| | - Sebastian P Galuska
- Institute of Biochemistry, Medical Faculty, Justus-Liebig-University, Giessen, Germany
| |
Collapse
|
10
|
Defaus S, Gupta P, Andreu D, Gutiérrez-Gallego R. Mammalian protein glycosylation--structure versus function. Analyst 2015; 139:2944-67. [PMID: 24779027 DOI: 10.1039/c3an02245e] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Carbohydrates fulfil many common as well as extremely important functions in nature. They show a variety of molecular displays--e.g., free mono-, oligo-, and polysaccharides, glycolipids, proteoglycans, glycoproteins, etc.--with particular roles and localizations in living organisms. Structure-specific peculiarities are so many and diverse that it becomes virtually impossible to cover them all from an analytical perspective. Hence this manuscript, focused on mammalian glycosylation, rather than a complete list of analytical descriptors or recognized functions for carbohydrate structures, comprehensively reviews three central issues in current glycoscience, namely (i) structural analysis of glycoprotein glycans, covering both classical and novel approaches for teasing out the structural puzzle as well as potential pitfalls of these processes; (ii) an overview of functions attributed to carbohydrates, covering from monosaccharide to complex, well-defined epitopes and full glycans, including post-glycosylational modifications, and (iii) recent technical advances allowing structural identification of glycoprotein glycans with simultaneous assignation of biological functions.
Collapse
Affiliation(s)
- S Defaus
- Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona Biomedical Research Park, 08003 Barcelona, Spain.
| | | | | | | |
Collapse
|
11
|
Simon P, Feuerstacke C, Kaese M, Saboor F, Middendorff R, Galuska SP. Polysialylation of NCAM characterizes the proliferation period of contractile elements during postnatal development of the epididymis. PLoS One 2015; 10:e0123960. [PMID: 25822229 PMCID: PMC4379024 DOI: 10.1371/journal.pone.0123960] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 02/11/2015] [Indexed: 11/19/2022] Open
Abstract
Polysialic acid (polySia) attached to the neural cell adhesion molecule (NCAM) regulates inter alia the proliferation and differentiation via the interactions with neurotrophins. Since in postnatal epididymis neurotrophins and their receptors like the Low-Affinity Nerve Growth Factor Receptor p75 and TrK B receptor are expressed, we wanted to analyze if the polysialylation of NCAM is also involved during the development of the epididymis. To this end, we monitored the developmental changes in the expression of the polysialyltransferases and NCAM polysialylation using murine epididymis at different time points during postnatal development. Our results revealed that during postnatal development of the epididymis both polysialyltransferases, ST8SiaII and ST8SiaIV, were expressed and that the expression levels dropped with increasing age. In agreement with the expression levels of the polysialyltransferases the highest content of polysialylated NCAM was present during the first 10 days after birth. Interestingly, proliferating smooth muscle cell populations prevalently expressed polysialylated NCAM. Furthermore, we observed that inverse to the decrease in polysialylation of smooth muscle cells a strong up-regulation of collagen takes place suggesting a functional relationship since collagen was recently described to induce the turnover of polysialylated NCAM via an induction of endocytosis in cellulo. The same time course of polySia and collagen synthesis was also observed in other regions of the male reproductive system e.g. vas deferens and tunica albuginea (testis). Together, we identified a spatio-temporal expression pattern of polySia-NCAM characterized by high proliferation rate of smooth muscle cells and low collagen content.
Collapse
Affiliation(s)
- Peter Simon
- Institute of Biochemistry, Medical Faculty, Justus-Liebig-University, Friedrichstr. 24, 35392, Giessen, Germany
- Department of Anatomy and Cell Biology, Medical Faculty, Justus-Liebig-University, Aulweg 123, 35385, Giessen, Germany
| | - Caroline Feuerstacke
- Department of Anatomy and Cell Biology, Medical Faculty, Justus-Liebig-University, Aulweg 123, 35385, Giessen, Germany
| | - Miriam Kaese
- Institute of Biochemistry, Medical Faculty, Justus-Liebig-University, Friedrichstr. 24, 35392, Giessen, Germany
| | - Farhan Saboor
- Department of Anatomy and Cell Biology, Medical Faculty, Justus-Liebig-University, Aulweg 123, 35385, Giessen, Germany
| | - Ralf Middendorff
- Department of Anatomy and Cell Biology, Medical Faculty, Justus-Liebig-University, Aulweg 123, 35385, Giessen, Germany
- * E-mail: (RM); (SPG)
| | - Sebastian P. Galuska
- Institute of Biochemistry, Medical Faculty, Justus-Liebig-University, Friedrichstr. 24, 35392, Giessen, Germany
- * E-mail: (RM); (SPG)
| |
Collapse
|
12
|
Schnaar RL, Gerardy-Schahn R, Hildebrandt H. Sialic acids in the brain: gangliosides and polysialic acid in nervous system development, stability, disease, and regeneration. Physiol Rev 2014; 94:461-518. [PMID: 24692354 DOI: 10.1152/physrev.00033.2013] [Citation(s) in RCA: 525] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Every cell in nature carries a rich surface coat of glycans, its glycocalyx, which constitutes the cell's interface with its environment. In eukaryotes, the glycocalyx is composed of glycolipids, glycoproteins, and proteoglycans, the compositions of which vary among different tissues and cell types. Many of the linear and branched glycans on cell surface glycoproteins and glycolipids of vertebrates are terminated with sialic acids, nine-carbon sugars with a carboxylic acid, a glycerol side-chain, and an N-acyl group that, along with their display at the outmost end of cell surface glycans, provide for varied molecular interactions. Among their functions, sialic acids regulate cell-cell interactions, modulate the activities of their glycoprotein and glycolipid scaffolds as well as other cell surface molecules, and are receptors for pathogens and toxins. In the brain, two families of sialoglycans are of particular interest: gangliosides and polysialic acid. Gangliosides, sialylated glycosphingolipids, are the most abundant sialoglycans of nerve cells. Mouse genetic studies and human disorders of ganglioside metabolism implicate gangliosides in axon-myelin interactions, axon stability, axon regeneration, and the modulation of nerve cell excitability. Polysialic acid is a unique homopolymer that reaches >90 sialic acid residues attached to select glycoproteins, especially the neural cell adhesion molecule in the brain. Molecular, cellular, and genetic studies implicate polysialic acid in the control of cell-cell and cell-matrix interactions, intermolecular interactions at cell surfaces, and interactions with other molecules in the cellular environment. Polysialic acid is essential for appropriate brain development, and polymorphisms in the human genes responsible for polysialic acid biosynthesis are associated with psychiatric disorders including schizophrenia, autism, and bipolar disorder. Polysialic acid also appears to play a role in adult brain plasticity, including regeneration. Together, vertebrate brain sialoglycans are key regulatory components that contribute to proper development, maintenance, and health of the nervous system.
Collapse
|
13
|
Scott H, Panin VM. The role of protein N-glycosylation in neural transmission. Glycobiology 2014; 24:407-17. [PMID: 24643084 DOI: 10.1093/glycob/cwu015] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Recent studies have explored the function of N-linked glycosylation in the nervous system, demonstrating essential roles of carbohydrate structures in neural development. The function of N-glycans in neural physiology remains less understood; however, increasing evidence indicates that N-glycans can play specific modulatory roles controlling neural transmission and excitability of neural circuits. These roles are mediated via effects on synaptic proteins involved in neurotransmitter release, transporters that regulate nerotransmitter concentrations, neurotransmitter receptors, as well as via regulation of proteins that control excitability and response to milieu stimuli, such as voltage-gated ion channels and transient receptor potential channels, respectively. Sialylated N-glycan structures are among the most potent modulators of cell excitability, exerting prominent effects on voltage gated Na(+) and K(+) channels. This modulation appears to be underlain by complex molecular mechanisms involving electrostatic effects, as well as interaction modes based on more specific steric effects and interactions with lectins and other molecules. Data also indicate that particular features of N-glycans, such as their location on a protein and structural characteristics, can be specifically associated with the effect of glycosylation. These features and their functional implications can vary between different cell types, which highlight the importance of in vivo analyses of glycan functions. Experimental challenges are associated with the overwhelming complexity of the nervous system and glycosylation pathways in vertebrates, and thus model organisms like Drosophila should help elucidate evolutionarily conserved mechanisms underlying glycan functions. Recent studies supported this notion and shed light on functions of several glycosylation genes involved in the regulation of the nervous system.
Collapse
Affiliation(s)
- Hilary Scott
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, TX 77843, USA
| | | |
Collapse
|
14
|
Scott H, Panin VM. N-glycosylation in regulation of the nervous system. ADVANCES IN NEUROBIOLOGY 2014; 9:367-94. [PMID: 25151388 DOI: 10.1007/978-1-4939-1154-7_17] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Protein N-glycosylation can influence the nervous system in a variety of ways by affecting functions of glycoproteins involved in nervous system development and physiology. The importance of N-glycans for different aspects of neural development has been well documented. For example, some N-linked carbohydrate structures were found to play key roles in neural cell adhesion and axonal targeting during development. At the same time, the involvement of glycosylation in the regulation of neural physiology remains less understood. Recent studies have implicated N-glycosylation in the regulation of neural transmission, revealing novel roles of glycans in synaptic processes and the control of neural excitability. N-Glycans were found to markedly affect the function of several types of synaptic proteins involved in key steps of synaptic transmission, including neurotransmitter release, reception, and uptake. Glycosylation also regulates a number of channel proteins, such as TRP channels that control responses to environmental stimuli and voltage-gated ion channels, the principal determinants of neuronal excitability. Sialylated carbohydrate structures play a particularly prominent part in the modulation of voltage-gated ion channels. Sialic acids appear to affect channel functions via several mechanisms, including charge interactions, as well as other interactions that probably engage steric effects and interactions with other molecules. Experiments also indicated that some structural features of glycans can be particularly important for their function. Since glycan structures can vary significantly between different cell types and depend on the metabolic state of the cell, it is important to analyze glycan functions using in vivo approaches. While the complexity of the nervous system and intricacies of glycosylation pathways can create serious obstacles for in vivo experiments in vertebrates, recent studies have indicated that more simple and experimentally tractable model organisms like Drosophila should provide important advantages for elucidating evolutionarily conserved functions of N-glycosylation in the nervous system.
Collapse
Affiliation(s)
- Hilary Scott
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, TX, 77843, USA
| | | |
Collapse
|
15
|
Ulm C, Saffarzadeh M, Mahavadi P, Müller S, Prem G, Saboor F, Simon P, Middendorff R, Geyer H, Henneke I, Bayer N, Rinné S, Lütteke T, Böttcher-Friebertshäuser E, Gerardy-Schahn R, Schwarzer D, Mühlenhoff M, Preissner KT, Günther A, Geyer R, Galuska SP. Soluble polysialylated NCAM: a novel player of the innate immune system in the lung. Cell Mol Life Sci 2013; 70:3695-708. [PMID: 23619613 PMCID: PMC11113884 DOI: 10.1007/s00018-013-1342-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 04/10/2013] [Accepted: 04/11/2013] [Indexed: 11/27/2022]
Abstract
Posttranslational modification of the neural cell adhesion molecule (NCAM) by polysialic acid (polySia) is well studied in the nervous system and described as a dynamic modulator of plastic processes like precursor cell migration, axon fasciculation, and synaptic plasticity. Here, we describe a novel function of polysialylated NCAM (polySia-NCAM) in innate immunity of the lung. In mature lung tissue of healthy donors, polySia was exclusively attached to the transmembrane isoform NCAM-140 and located to intracellular compartments of epithelial cells. In patients with chronic obstructive pulmonary disease, however, increased polySia levels and processing of the NCAM carrier were observed. Processing of polysialylated NCAM was reproduced in a mouse model by bleomycin administration leading to an activation of the inflammasome and secretion of interleukin (IL)-1β. As shown in a cell culture model, polySia-NCAM-140 was kept in the late trans-Golgi apparatus of lung epithelial cells and stimulation by IL-1β or lipopolysaccharide induced metalloprotease-mediated ectodomain shedding, resulting in the secretion of soluble polySia-NCAM. Interestingly, polySia chains of secreted NCAM neutralized the cytotoxic activity of extracellular histones as well as DNA/histone-network-containing "neutrophil extracellular traps", which are formed during invasion of microorganisms. Thus, shedding of polySia-NCAM by lung epithelial cells may provide a host-protective mechanism to reduce tissue damage during inflammatory processes.
Collapse
Affiliation(s)
- Christina Ulm
- Institute of Biochemistry, Justus-Liebig-University, Giessen, Germany
| | - Mona Saffarzadeh
- Institute of Biochemistry, Justus-Liebig-University, Giessen, Germany
| | - Poornima Mahavadi
- Department of Internal Medicine II, Justus-Liebig-University, Giessen, Germany
| | - Sandra Müller
- Institute of Biochemistry, Justus-Liebig-University, Giessen, Germany
| | - Gerlinde Prem
- Institute of Biochemistry, Justus-Liebig-University, Giessen, Germany
| | - Farhan Saboor
- Institute of Anatomy and Cell Biology, Faculty of Medicine, Justus-Liebig-University, Giessen, Germany
| | - Peter Simon
- Institute of Biochemistry, Justus-Liebig-University, Giessen, Germany
| | - Ralf Middendorff
- Institute of Anatomy and Cell Biology, Faculty of Medicine, Justus-Liebig-University, Giessen, Germany
| | - Hildegard Geyer
- Institute of Biochemistry, Justus-Liebig-University, Giessen, Germany
| | - Ingrid Henneke
- Department of Internal Medicine II, Justus-Liebig-University, Giessen, Germany
| | - Nils Bayer
- Institute of Biochemistry, Justus-Liebig-University, Giessen, Germany
| | - Susanne Rinné
- Institute of Physiology and Pathophysiology, Philipps-University, Marburg, Germany
| | - Thomas Lütteke
- Institute of Veterinary Physiology and Biochemistry, Justus-Liebig-University, Giessen, Germany
| | | | | | - David Schwarzer
- Institute of Cellular Chemistry, Medical School, Hannover, Germany
| | | | | | - Andreas Günther
- Department of Internal Medicine II, Justus-Liebig-University, Giessen, Germany
| | - Rudolf Geyer
- Institute of Biochemistry, Justus-Liebig-University, Giessen, Germany
| | | |
Collapse
|
16
|
Park K, Biederer T. Neuronal adhesion and synapse organization in recovery after brain injury. FUTURE NEUROLOGY 2013; 8:555-567. [PMID: 24489481 DOI: 10.2217/fnl.13.35] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Few specific therapeutic targets exist to manage brain injury, despite the prevalence of stroke or traumatic brain injury. With traumatic brain injury, characteristic neuronal changes include axonal swelling and degeneration, and the loss of synapses, the sites of communication between neurons. This is followed by axonal sprouting and alterations in synaptic markers in recovery. The resulting changes in neuronal connectivity are likely to contribute to the effects of traumatic brain injury on cognitive functions and the underlying mechanisms may represent points of therapeutic intervention. In agreement, animal studies implicate adhesion and signaling molecules that organize synapses as molecular players in neuronal recovery. In this article, the authors focus on the role of cell surface interactions in the recovery after brain injury in humans and animals. The authors review cellular and synaptic alterations that occur with injury and how changes in cell adhesion, protein expression and modification may be involved in recovery. The changes in neuronal surface interactions as potential targets and their possible value for the development of therapeutics are also discussed.
Collapse
Affiliation(s)
- Kellie Park
- Department of Anesthesiology, Yale University School of Medicine, New Haven, CT, USA
| | - Thomas Biederer
- Department of Molecular Biophysics & Biochemistry, Yale University School of Medicine, New Haven, CT, USA ; Program in Cellular Neuroscience, Neurodegeneration & Repair, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
17
|
|
18
|
Nairn AV, Aoki K, dela Rosa M, Porterfield M, Lim JM, Kulik M, Pierce JM, Wells L, Dalton S, Tiemeyer M, Moremen KW. Regulation of glycan structures in murine embryonic stem cells: combined transcript profiling of glycan-related genes and glycan structural analysis. J Biol Chem 2012; 287:37835-56. [PMID: 22988249 DOI: 10.1074/jbc.m112.405233] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The abundance and structural diversity of glycans on glycoproteins and glycolipids are highly regulated and play important roles during vertebrate development. Because of the challenges associated with studying glycan regulation in vertebrate embryos, we have chosen to study mouse embryonic stem (ES) cells as they differentiate into embryoid bodies (EBs) or into extraembryonic endodermal (ExE) cells as a model for cellular differentiation. We profiled N- and O-glycan structures isolated from these cell populations and examined transcripts encoding the corresponding enzymatic machinery for glycan biosynthesis in an effort to probe the mechanisms that drive the regulation of glycan diversity. During differentiation from mouse ES cells to either EBs or ExE cells, general trends were detected. The predominance of high mannose N-glycans in ES cells shifted to an equal abundance of complex and high mannose structures, increased sialylation, and increased α-Gal termination in the differentiated cell populations. Whereas core 1 O-glycan structures predominated in all three cell populations, increased sialylation and increased core diversity characterized the O-glycans of both differentiated cell types. Increased polysialylation was also found in both differentiated cell types. Differences between the two differentiated cell types included greater sialylation of N-glycans in EBs, whereas α-Gal-capped structures were more prevalent in ExE cells. Changes in glycan structures generally, but not uniformly, correlated with alterations in transcript abundance for the corresponding biosynthetic enzymes, suggesting that transcriptional regulation contributes significantly to the regulation of glycan expression. Knowledge of glycan structural diversity and transcript regulation should provide greater understanding of the roles of protein glycosylation in vertebrate development.
Collapse
Affiliation(s)
- Alison V Nairn
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Chen C, Constantinou A, Chester KA, Vyas B, Canis K, Haslam SM, Dell A, Epenetos AA, Deonarain MP. Glycoengineering Approach to Half-Life Extension of Recombinant Biotherapeutics. Bioconjug Chem 2012; 23:1524-33. [DOI: 10.1021/bc200624a] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Chen Chen
- Department of Life Sciences,
Faculty of Natural Sciences, Imperial College London, Exhibition Road, London, United Kingdom, SW7 2AZ
| | - Antony Constantinou
- Department of Life Sciences,
Faculty of Natural Sciences, Imperial College London, Exhibition Road, London, United Kingdom, SW7 2AZ
| | - Kerry A. Chester
- UCL Cancer Institute, Paul O’Gorman Building, 72 Huntley Street, London, United
Kingdom, WC1E 6BT
| | - Bijal Vyas
- Department of Life Sciences,
Faculty of Natural Sciences, Imperial College London, Exhibition Road, London, United Kingdom, SW7 2AZ
| | - Kevin Canis
- Department of Life Sciences,
Faculty of Natural Sciences, Imperial College London, Exhibition Road, London, United Kingdom, SW7 2AZ
| | - Stuart M. Haslam
- Department of Life Sciences,
Faculty of Natural Sciences, Imperial College London, Exhibition Road, London, United Kingdom, SW7 2AZ
| | - Anne Dell
- Department of Life Sciences,
Faculty of Natural Sciences, Imperial College London, Exhibition Road, London, United Kingdom, SW7 2AZ
| | - Agamemnon A. Epenetos
- Department of Life Sciences,
Faculty of Natural Sciences, Imperial College London, Exhibition Road, London, United Kingdom, SW7 2AZ
| | - Mahendra P. Deonarain
- Department of Life Sciences,
Faculty of Natural Sciences, Imperial College London, Exhibition Road, London, United Kingdom, SW7 2AZ
| |
Collapse
|
20
|
Abstract
Protein glycosylation is a ubiquitous post-translational modification found in all domains of life. Despite their significant complexity in animal systems, glycan structures have crucial biological and physiological roles, from contributions in protein folding and quality control to involvement in a large number of biological recognition events. As a result, they impart an additional level of 'information content' to underlying polypeptide structures. Improvements in analytical methodologies for dissecting glycan structural diversity, along with recent developments in biochemical and genetic approaches for studying glycan biosynthesis and catabolism, have provided a greater understanding of the biological contributions of these complex structures in vertebrates.
Collapse
|
21
|
Brennaman LH, Zhang X, Guan H, Triplett JW, Brown A, Demyanenko GP, Manis PB, Landmesser L, Maness PF. Polysialylated NCAM and ephrinA/EphA regulate synaptic development of GABAergic interneurons in prefrontal cortex. ACTA ACUST UNITED AC 2012; 23:162-77. [PMID: 22275477 DOI: 10.1093/cercor/bhr392] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A novel function for the neural cell adhesion molecule (NCAM) was identified in ephrinA/EphA-mediated repulsion as an important regulatory mechanism for development of GABAergic inhibitory synaptic connections in mouse prefrontal cortex. Deletion of NCAM, EphA3, or ephrinA2/3/5 in null mutant mice increased the numbers and size of perisomatic synapses between GABAergic basket interneurons and pyramidal cells in the developing cingulate cortex (layers II/III). A functional consequence of NCAM loss was increased amplitudes and faster kinetics of miniature inhibitory postsynaptic currents in NCAM null cingulate cortex. NCAM and EphA3 formed a molecular complex and colocalized with the inhibitory presynaptic marker vesicular GABA transporter (VGAT) in perisomatic puncta and neuropil in the cingulate cortex. EphrinA5 treatment promoted axon remodeling of enhanced green fluorescent protein-labeled basket interneurons in cortical slice cultures and induced growth cone collapse in wild-type but not NCAM null mutant neurons. NCAM modified with polysialic acid (PSA) was required to promote ephrinA5-induced axon remodeling of basket interneurons in cortical slices, likely by providing a permissive environment for ephrinA5/EphA3 signaling. These results reveal a new mechanism in which NCAM and ephrinAs/EphA3 coordinate to constrain GABAergic interneuronal arborization and perisomatic innervation, potentially contributing to excitatory/inhibitory balance in prefrontal cortical circuitry.
Collapse
Affiliation(s)
- Leann H Brennaman
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Eggers K, Werneburg S, Schertzinger A, Abeln M, Schiff M, Scharenberg MA, Burkhardt H, Mühlenhoff M, Hildebrandt H. Polysialic acid controls NCAM signals at cell–cell contacts to regulate focal adhesion independent from FGF receptor activity. J Cell Sci 2011; 124:3279-91. [DOI: 10.1242/jcs.084863] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The polysialic acid (polySia) modification of the neural cell adhesion molecule NCAM is a key regulator of cell migration. Yet its role in NCAM-dependent or NCAM-independent modulation of motility and cell–matrix adhesion is largely unresolved. Here, we demonstrate that loss of polySia attenuates tumour cell migration and augments the number of focal adhesions in a cell–cell contact- and NCAM-dependent manner. In the presence or absence of polySia, NCAM never colocalised with focal adhesions but was enriched at cell–cell contacts. Focal adhesion of polySia- and NCAM-negative cells was enhanced by incubation with soluble NCAM or by removing polySia from heterotypic contacts with polySia–NCAM-positive cells. Focal adhesion was compromised by the src-family kinase inhibitor PP2, whereas loss of polySia or exposure to NCAM promoted the association of p59Fyn with the focal adhesion scaffolding protein paxillin. Unlike other NCAM responses, NCAM-induced focal adhesion was not prevented by inhibiting FGF receptor activity and could be evoked by NCAM fragments comprising immunoglobulin domains three and four but not by the NCAM fibronectin domains alone or by an NCAM-derived peptide known to interact with and activate FGF receptors. Together, these data indicate that polySia regulates cell motility through NCAM-induced but FGF-receptor-independent signalling to focal adhesions.
Collapse
Affiliation(s)
- Katinka Eggers
- Institute of Cellular Chemistry, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Sebastian Werneburg
- Institute of Cellular Chemistry, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Andrea Schertzinger
- Institute of Cellular Chemistry, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Markus Abeln
- Institute of Cellular Chemistry, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Miriam Schiff
- Institute of Cellular Chemistry, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | | | - Hannelore Burkhardt
- Institute of Cellular Chemistry, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Martina Mühlenhoff
- Institute of Cellular Chemistry, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Herbert Hildebrandt
- Institute of Cellular Chemistry, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| |
Collapse
|
23
|
Kulahin N, Kristensen O, Rasmussen KK, Olsen L, Rydberg P, Vestergaard B, Kastrup JS, Berezin V, Bock E, Walmod PS, Gajhede M. Structural model and trans-interaction of the entire ectodomain of the olfactory cell adhesion molecule. Structure 2011; 19:203-11. [PMID: 21300289 DOI: 10.1016/j.str.2010.12.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Revised: 11/10/2010] [Accepted: 12/12/2010] [Indexed: 01/12/2023]
Abstract
The ectodomain of olfactory cell adhesion molecule (OCAM/NCAM2/RNCAM) consists of five immunoglobulin (Ig) domains (IgI-V), followed by two fibronectin-type 3 (Fn3) domains (Fn3I-II). A complete structural model of the entire ectodomain of human OCAM has been assembled from crystal structures of six recombinant proteins corresponding to different regions of the ectodomain. The model is the longest experimentally based composite structural model of an entire IgCAM ectodomain. It displays an essentially linear arrangement of IgI-V, followed by bends between IgV and Fn3I and between Fn3I and Fn3II. Proteins containing IgI-IgII domains formed stable homodimers in solution and in crystals. Dimerization could be disrupted in vitro by mutations in the dimer interface region. In conjunction with the bent ectodomain conformation, which can position IgI-V parallel with the cell surface, the IgI-IgII dimerization enables OCAM-mediated trans-interactions with an intercellular distance of about 20 nm, which is consistent with that observed in synapses.
Collapse
Affiliation(s)
- Nikolaj Kulahin
- Protein Laboratory, Department of Neuroscience and Pharmacology, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Polysialic acid: a veteran sugar with a new site of action in the brain. Proc Natl Acad Sci U S A 2010; 107:10335-6. [PMID: 20534580 DOI: 10.1073/pnas.1005637107] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
25
|
Drake PM, Stock CM, Nathan JK, Gip P, Golden KPK, Weinhold B, Gerardy-Schahn R, Bertozzi CR. Polysialic acid governs T-cell development by regulating progenitor access to the thymus. Proc Natl Acad Sci U S A 2009; 106:11995-2000. [PMID: 19587240 PMCID: PMC2715481 DOI: 10.1073/pnas.0905188106] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2009] [Indexed: 01/16/2023] Open
Abstract
Although the polysialyltransferase ST8Sia IV is expressed in both primary and secondary human lymphoid organs, its product, polysialic acid (polySia), has been largely overlooked by immunologists. In contrast, polySia expression and function in the nervous system has been well characterized. In this context, polySia modulates cellular adhesion, migration, cytokine response, and contact-dependent differentiation. Provocatively, these same processes are vital components of immune development and function. We previously established that mouse multipotent hematopoietic progenitors use ST8Sia IV to express polySia on their cell surfaces. Here, we demonstrate that, relative to wild-type controls, ST8Sia IV(-/-) mice have a 30% reduction in total thymocytes and a concomitant deficiency in the earliest thymocyte precursors. T-cell progenitors originate in the bone marrow and are mobilized to the blood at regular intervals by unknown signals. We performed in vivo reconstitution experiments in which ST8Sia IV(-/-) progenitors competed with wild-type cells to repopulate depleted or deficient immune subsets. Progenitors lacking polySi exhibited a specific defect in T-cell development because of an inability to access the thymus. This phenotype probably reflects a decreased capacity of the ST8Sia IV(-/-) progenitors to escape from the bone marrow niche. Collectively, these results provide evidence that polySia is involved in hematopoietic development.
Collapse
Affiliation(s)
| | | | | | - Phung Gip
- Molecular and Cell Biology, University of California, Berkeley and the
| | | | - Birgit Weinhold
- Abteilung Zelluläre Chemie, Zentrum Biochemie, Medizinische Hochschule 30625 Hannover, Germany
| | - Rita Gerardy-Schahn
- Abteilung Zelluläre Chemie, Zentrum Biochemie, Medizinische Hochschule 30625 Hannover, Germany
| | - Carolyn R. Bertozzi
- Departments of Chemistry and
- Molecular and Cell Biology, University of California, Berkeley and the
- Howard Hughes Medical Institute, Berkeley, CA 94720-1460; and
| |
Collapse
|