1
|
Ouhajjou M, Edahbi M, Hachimi H. First surveillance of pesticides in soils of the perimeter of Tadla, a Moroccan sugar beet intensive area. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 196:28. [PMID: 38066302 DOI: 10.1007/s10661-023-12182-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023]
Abstract
With the long-term application of pesticides on sugar beet farms in the irrigated perimeter of Tadla in Morocco for over 50 years, pesticide monitoring is necessary to assess soil health. The objective of our study was to monitor multiple pesticide residues in topsoil samples collected from post-harvest sugar beet fields and verify their migration to deep soil layers. Topsoil and deep soil samples were collected from arbitrarily selected sugar beet fields in the IPT. In this study, a target-screening method was applied. All target pesticides were detected in soil samples, with tefluthrin being the most frequently detected pesticide. The residue with the highest concentration in soil samples was DDE. All the soil samples contained a mixture of pesticide residues, with a maximum of 13 residues per sample. The total pesticide content decreased toward more profound layers of soil, except in one field where it reached a concentration of 348 µg/kg at the deeper soil layer. For pesticides detected at the three soil depths, only tefluthrin concentration increased in the deep soil layer. The results provide comprehensive and precise information on the pesticide residue status in sugar beet soils warning against the multiple risks that this contamination can cause. This study indicates the need of regular monitoring of pesticides over a large area of the perimeter to enable decision-makers to pronounce the impacts of the extension and intensification of sugar beet cultivation at the irrigated perimeter of Tadla.
Collapse
Affiliation(s)
- Majda Ouhajjou
- Systems Engineering Laboratory (LGS), Sultan Moulay Slimane University of Beni Mellal, Beni Mellal, Morocco.
| | - Mohamed Edahbi
- Higher School of Technology (ESTFBS), Sultan Moulay Slimane University of Beni Mellal, Beni Mellal, Morocco
| | - Hanaa Hachimi
- Systems Engineering Laboratory (LGS), Sultan Moulay Slimane University of Beni Mellal, Beni Mellal, Morocco
| |
Collapse
|
2
|
Nasraoui C, Jaoued-Grayaa N, Vanoye L, Chevalier Y, Hbaieb S. Development of molecularly imprinted polymer for the selective recognition of the weakly interacting fenamiphos molecule. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
3
|
Roselló-Márquez G, Fernández-Domene RM, García-Antón J. Organophosphorus pesticides (chlorfenvinphos, phosmet and fenamiphos) photoelectrodegradation by using WO3 nanostructures as photoanode. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115366] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
4
|
de Souza Alcarás PA, Zeigelboim BS, Corazza MCA, Lüders D, Marques JM, de Lacerda ABM. Findings on the Central Auditory Functions of Endemic Disease Control Agents. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:7051. [PMID: 34280998 PMCID: PMC8297216 DOI: 10.3390/ijerph18137051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/26/2021] [Accepted: 06/26/2021] [Indexed: 11/16/2022]
Abstract
This study aimed to assess the central auditory functions of endemic disease control agents. This cross-sectional cohort study comprised two groups: the exposed group, with 38 male endemic disease control agents with simultaneous occupational noise and pesticide exposure; and the control group, with 18 age- and sex-matched workers without occupational noise and/or pesticide exposure. All participants underwent pure-tone audiometry, brainstem auditory evoked potentials, dichotic digits test, and transient-evoked otoacoustic emissions suppression effect. There was a significant inter-group difference in waves III and V absolute latencies, and interpeak I-III and I-V latencies bilaterally, with worse results found in the exposed group. Abnormal dichotic digits test results occurred more often in the exposed group, with a significant association between pesticide- and noise-exposure and the abnormal results (p = 0.0099). The transient-evoked otoacoustic emissions with suppression effect did not yield significant inter-group differences. It was concluded that pesticide and noise exposure induce harmful effects on the central auditory functions, particularly on the brainstem and figure-ground speech-sound auditory skills.
Collapse
Affiliation(s)
- Patrícia Arruda de Souza Alcarás
- Audiology Department, Speech Therapy School, University of Western São Paulo, UNOESTE, Presidente Prudente 19050-920, SP, Brazil; (P.A.d.S.A.); (M.C.A.C.)
| | - Bianca Simone Zeigelboim
- Post-Graduate Program in Communication Disorders, Tuiuti University of Paraná, UTP, Curitiba 82010-330, PR, Brazil; (B.S.Z.); (D.L.); (J.M.M.)
| | - Maria Cristina Alves Corazza
- Audiology Department, Speech Therapy School, University of Western São Paulo, UNOESTE, Presidente Prudente 19050-920, SP, Brazil; (P.A.d.S.A.); (M.C.A.C.)
| | - Débora Lüders
- Post-Graduate Program in Communication Disorders, Tuiuti University of Paraná, UTP, Curitiba 82010-330, PR, Brazil; (B.S.Z.); (D.L.); (J.M.M.)
| | - Jair Mendes Marques
- Post-Graduate Program in Communication Disorders, Tuiuti University of Paraná, UTP, Curitiba 82010-330, PR, Brazil; (B.S.Z.); (D.L.); (J.M.M.)
| | - Adriana Bender Moreira de Lacerda
- Audiology Department, Speech Language and Audiology School, Medicine Faculty, Université de Montréal, UdeM, Montreal H3C 3J7, QC, Canada
| |
Collapse
|
5
|
Pirsaheb M, Nouri M, Karimi H, Mustafa YT, Hossini H, Naderi Z. Occurrence of Residual Organophosphorus Pesticides in soil of some Asian countries, Australia and Nigeria. ACTA ACUST UNITED AC 2020. [DOI: 10.1088/1757-899x/737/1/012175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
6
|
Cáceres T, Venkateswarlu K. Sorption and mobility of 14C-fenamiphos in Brazilian soils. ENVIRONMENTAL MONITORING AND ASSESSMENT 2018; 190:109. [PMID: 29396599 DOI: 10.1007/s10661-018-6493-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 01/22/2018] [Indexed: 06/07/2023]
Abstract
Although fenamiphos is widely used as an insecticide and nematicide in bowling greens and agriculture, information on its sorption in tropical soils is limited. In this study, mobility, sorption, and desorption dynamics of 14C-fenamiphos in three contrasting Brazilian soils were examined both in batch and column experiments. Fenamiphos sorption coefficients (K d ) were 2.33, 3.86, and 3.9 L kg-1 for the three soils tested. The insecticide exhibited linear adsorption isotherms in all the three soils, and desorption was in a range of 30-40% during a 72-h period. With its low mobility, fenamiphos did not percolate through the soil profile even after 48 h. However, there is a risk of leaching to water bodies due to runoff because of its high solubility in water. In view of the fact that fenamiphos and its oxidation products are highly toxic to aquatic invertebrates and could affect the soil microbial activities even at low concentrations, the present information is of great importance in risk assessment of fenamiphos in the environment.
Collapse
Affiliation(s)
- Tanya Cáceres
- CERAR, Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes Boulevard, Mawson Lakes, SA, 5095, Australia.
- TC Environmental Consultancy, Av. Los Incas N10, Ambato, Ecuador.
| | - Kadiyala Venkateswarlu
- Formerly Department of Microbiology, Sri Krishnadevaraya University, Anantapur, 515055, India
| |
Collapse
|
7
|
Alloh MO, AL-Kurdi S, Alagha MR, Yasser EN. Nemacur Residue Analysis in Soil Water and Cucumber Samples Collected from the Field in Gaza Strip, Palestine. ACTA ACUST UNITED AC 2018. [DOI: 10.4236/ajps.2018.93039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
8
|
Subba Reddy GV, Rafi MM, Rubesh Kumar S, Khayalethu N, Muralidhara Rao D, Manjunatha B, Philip GH, Reddy BR. Optimization study of 2-hydroxyquinoxaline (2-HQ) biodegradation by Ochrobactrum sp. HQ1. 3 Biotech 2016; 6:51. [PMID: 28330121 PMCID: PMC4746200 DOI: 10.1007/s13205-015-0358-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 08/17/2015] [Indexed: 11/22/2022] Open
Abstract
A novel aerobic gram-negative bacterial strain capable of utilizing 2-hydroxyquinoxaline (2-HQ) as sole source of carbon and energy was isolated from Indian agricultural soil and named as HQ1. Strain HQ1 was identified as Ochrobactrum sp. on the basis of morphology, physico-biochemical characteristics and 16S rRNA sequence analysis. The generation time of Ochrobactrum sp. HQ1 on 2-HQ at log phase is 0.71 h or 42.6 min. The degradation of 2-HQ by HQ1 under various physico-chemical parameters was analysed by HPLC and observed to be optimum with a high inoculum density (1.0 OD) at pH 7–8, temperatures 37–40°C and a high concentration of 2-HQ (500 ppm). Degradation of 2-HQ was also improved when additional nitrogen sources were used and this was attributed to the enhanced growth of the bacterium on the readily available nitrogen sources. Analysis of 2-HQ degradation by GC–MS resulted in elucidation of the degradation pathway for HQ1, a novel observation for aerobic Gram-negative bacteria. These findings are a possible indication of the application of HQ1 in the bioremediation of pesticide/metabolite contamination.
Collapse
|
9
|
Iyer R, Iken B, Damania A. A comparison of organophosphate degradation genes and bioremediation applications. ENVIRONMENTAL MICROBIOLOGY REPORTS 2013; 5:787-798. [PMID: 24249287 DOI: 10.1111/1758-2229.12095] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 08/11/2013] [Accepted: 08/13/2013] [Indexed: 06/02/2023]
Abstract
Organophosphates (OPs) form the bulk of pesticides that are currently in use around the world accounting for more than 30% of the world market. They also form the core for many nerve-based warfare agents including sarin and soman. The widespread use and the resultant build-up of OP pesticides and chemical nerve agents has led to the development of major health problems due to their extremely toxic interaction with any biological system that encounters them. Growing concern over the accumulation of OP compounds in our food products, in the soils from which they are harvested and in wastewater run-off has fuelled a growing interest in microbial biotechnology that provides cheap, efficient OP detoxification to supplement expensive chemical methods. In this article, we review the current state of knowledge of OP pesticide and chemical agent degradation and attempt to clarify confusion over identification and nomenclature of two major families of OP-degrading enzymes through a comparison of their structure and function. The isolation, characterization, utilization and manipulation of the major detoxifying enzymes and the molecular basis of degradation of OP pesticides and chemical nerve agents are discussed as well as the achievements and technological advancements made towards the bioremediation of such compounds.
Collapse
Affiliation(s)
- Rupa Iyer
- College of Technology, University of Houston, 300 Technology Building Houston, TX 77204-4021, USA
| | | | | |
Collapse
|
10
|
Cycoń M, Żmijowska A, Wójcik M, Piotrowska-Seget Z. Biodegradation and bioremediation potential of diazinon-degrading Serratia marcescens to remove other organophosphorus pesticides from soils. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2013; 117:7-16. [PMID: 23333465 DOI: 10.1016/j.jenvman.2012.12.031] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 12/19/2012] [Accepted: 12/24/2012] [Indexed: 06/01/2023]
Abstract
The ability of diazinon-degrading Serratia marcescens to remove organophosphorus pesticides (OPPs), i.e. chlorpyrifos (CP), fenitrothion (FT), and parathion (PT) was studied in a mineral salt medium (MSM) and in three soils of different characteristics. This strain was capable of using all insecticides at concentration of 50 mg/l as the only carbon source when grown in MSM, and 58.9%, 70.5%, and 82.5% of the initial dosage of CP, FT, and PT, respectively was degraded within 14 days. The biodegradation experiment showed that autochthonous microflora in all soils was characterized by a degradation potential of all tested OPPs; however, the initial lag phases for degradation of CP and FT, especially in sandy soil, were observed. During the 42-day experiment, 45.3%, 61.4% and 72.5% of the initial dose of CP, FT, and PT, respectively, was removed in sandy soil whereas the degradation of CP, FT, and PT in the same period, in sandy loam and silty soils reached 61.4%, 79.7% and 64.2%, and 68.9%, 81.0% and 63.6%, respectively. S. marcescens introduced into sterile soils showed a higher degradation potential (5-13%) for OPPs removal than those observed in non-sterile soil with naturally occurring attenuation. Inoculation of non-sterile soils with S. marcescens enhanced the disappearance rates of all insecticides, and DT50 for CP, FT, and PT was reduced by 20.7, 11.3 and 13.0 days, and 11.9, 7.0 and 8.1 days, and 9.7, 14.5 and 12.6 days in sandy, sandy loam, and silty soils, respectively, in comparison with non-sterile soils with only indigenous microflora. This ability of S. marcescens makes it a suitable strain for bioremediation of soils contaminated with OPPs.
Collapse
Affiliation(s)
- Mariusz Cycoń
- Department of Microbiology and Virology, Medical University of Silesia, Jagiellońska 4, 41-200 Sosnowiec, Poland.
| | | | | | | |
Collapse
|
11
|
Iyer R, Iken B. Identification of water-borne bacterial isolates for potential remediation of organophosphate contamination. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/abc.2013.31018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
12
|
Andreu V, Picó Y. Determination of currently used pesticides in biota. Anal Bioanal Chem 2012; 404:2659-81. [PMID: 22918537 DOI: 10.1007/s00216-012-6331-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2012] [Revised: 07/16/2012] [Accepted: 08/03/2012] [Indexed: 01/06/2023]
Abstract
Although pesticides enable control of the quantity and quality of farm products and food, and help to limit diseases in humans transmitted by insects and rodents, they are regarded as among the most dangerous environmental contaminants because of their tendency to bioaccumulate, and their mobility and long-term effects on living organisms. In the past decade, more analytical methods for accurate identification and quantitative determination of traces of pesticides in biota have been developed to improve our understanding of their risk to ecosystems and humans. Because sample preparation is often the rate-determining step in analysis of pesticides in biological samples, this review first discusses extraction and clean-up procedures, after a brief introduction to the classes, and the methods used in the analysis of pesticides in biota. The analytical methods, especially chromatographic techniques and immunoassay-based methods, are reviewed in detail, and their corresponding advantages, limitations, applications, and prospects are also discussed. This review mainly covers reports published since 2008 on methods for analysis of currently used pesticides in biota.
Collapse
Affiliation(s)
- Vicente Andreu
- Centro de Investigaciones sobre Desertificación -CIDE, Moncada, Valencia, Spain
| | | |
Collapse
|