1
|
Emser J, Wernet N, Hetzer B, Wohlmann E, Fischer R. The cysteine-rich virulence factor NipA of Arthrobotrys flagrans interferes with cuticle integrity of Caenorhabditis elegans. Nat Commun 2024; 15:5795. [PMID: 38987250 PMCID: PMC11237121 DOI: 10.1038/s41467-024-50096-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 06/27/2024] [Indexed: 07/12/2024] Open
Abstract
Animals protect themself from microbial attacks by robust skins or a cuticle as in Caenorhabditis elegans. Nematode-trapping fungi, like Arthrobotrys flagrans, overcome the cuticle barrier and colonize the nematode body. While lytic enzymes are important for infection, small-secreted proteins (SSPs) without enzymatic activity, emerge as crucial virulence factors. Here, we characterized NipA (nematode induced protein) which A. flagrans secretes at the penetration site. In the absence of NipA, A. flagrans required more time to penetrate C. elegans. Heterologous expression of the fungal protein in the epidermis of C. elegans led to blister formation. NipA contains 13 cysteines, 12 of which are likely to form disulfide bridges, and the remaining cysteine was crucial for blister formation. We hypothesize that NipA interferes with cuticle integrity to facilitate fungal entry. Genome-wide expression analyses of C. elegans expressing NipA revealed mis-regulation of genes associated with extracellular matrix (ECM) maintenance and innate immunity.
Collapse
Affiliation(s)
- Jennifer Emser
- Institute for Applied Biosciences. Department of Microbiology, Karlsruhe Institute of Technology (KIT) - South Campus, Fritz-Haber-Weg 4, Karlsruhe, 76131, Germany
| | - Nicole Wernet
- Institute for Applied Biosciences. Department of Microbiology, Karlsruhe Institute of Technology (KIT) - South Campus, Fritz-Haber-Weg 4, Karlsruhe, 76131, Germany
| | - Birgit Hetzer
- Max Rubner-Institut (MRI) - Federal Research Institute of Nutrition and Food, Haid-und-Neu-Strasse 9, Karlsruhe, 76131, Germany
| | - Elke Wohlmann
- Institute for Applied Biosciences. Department of Microbiology, Karlsruhe Institute of Technology (KIT) - South Campus, Fritz-Haber-Weg 4, Karlsruhe, 76131, Germany
| | - Reinhard Fischer
- Institute for Applied Biosciences. Department of Microbiology, Karlsruhe Institute of Technology (KIT) - South Campus, Fritz-Haber-Weg 4, Karlsruhe, 76131, Germany.
| |
Collapse
|
2
|
Manisha Y, Srinivasan M, Jobichen C, Rosenshine I, Sivaraman J. Sensing for survival: specialised regulatory mechanisms of Type III secretion systems in Gram-negative pathogens. Biol Rev Camb Philos Soc 2024; 99:837-863. [PMID: 38217090 DOI: 10.1111/brv.13047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/14/2023] [Accepted: 12/19/2023] [Indexed: 01/15/2024]
Abstract
For centuries, Gram-negative pathogens have infected the human population and been responsible for numerous diseases in animals and plants. Despite advancements in therapeutics, Gram-negative pathogens continue to evolve, with some having developed multi-drug resistant phenotypes. For the successful control of infections caused by these bacteria, we need to widen our understanding of the mechanisms of host-pathogen interactions. Gram-negative pathogens utilise an array of effector proteins to hijack the host system to survive within the host environment. These proteins are secreted into the host system via various secretion systems, including the integral Type III secretion system (T3SS). The T3SS spans two bacterial membranes and one host membrane to deliver effector proteins (virulence factors) into the host cell. This multifaceted process has multiple layers of regulation and various checkpoints. In this review, we highlight the multiple strategies adopted by these pathogens to regulate or maintain virulence via the T3SS, encompassing the regulation of small molecules to sense and communicate with the host system, as well as master regulators, gatekeepers, chaperones, and other effectors that recognise successful host contact. Further, we discuss the regulatory links between the T3SS and other systems, like flagella and metabolic pathways including the tricarboxylic acid (TCA) cycle, anaerobic metabolism, and stringent cell response.
Collapse
Affiliation(s)
- Yadav Manisha
- Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore
| | - Mahalashmi Srinivasan
- Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore
| | - Chacko Jobichen
- Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore
| | - Ilan Rosenshine
- Department of Microbiology and Molecular Genetics, The Hebrew University of Jerusalem, Ein Kerem, Jerusalem, 91120, Israel
| | - J Sivaraman
- Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore
| |
Collapse
|
3
|
Sensing microbial infections in the Drosophila melanogaster genetic model organism. Immunogenetics 2022; 74:35-62. [DOI: 10.1007/s00251-021-01239-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/20/2021] [Indexed: 12/17/2022]
|
4
|
Wernet N, Wernet V, Fischer R. The small-secreted cysteine-rich protein CyrA is a virulence factor participating in the attack of Caenorhabditis elegans by Duddingtonia flagrans. PLoS Pathog 2021; 17:e1010028. [PMID: 34735554 PMCID: PMC8568293 DOI: 10.1371/journal.ppat.1010028] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 10/11/2021] [Indexed: 01/14/2023] Open
Abstract
Nematode-trapping fungi (NTF) are a diverse and intriguing group of fungi that live saprotrophically but can switch to a predatory lifestyle when starving and in the presence of nematodes. NTF like Arthrobotrys oligospora or Duddingtonia flagrans produce adhesive trapping networks to catch and immobilize nematodes. After penetration of the cuticle, hyphae grow and develop inside the worm and secrete large amounts of hydrolytic enzymes for digestion. In many microbial pathogenic interactions small-secreted proteins (SSPs) are used to manipulate the host. The genome of D. flagrans encodes more than 100 of such putative SSPs one of which is the cysteine-rich protein CyrA. We have chosen this gene for further analysis because it is only found in NTF and appeared to be upregulated during the interaction. We show that the cyrA gene was transcriptionally induced in trap cells, and the protein accumulated at the inner rim of the hyphal ring before Caenorhabditis elegans capture. After worm penetration, the protein appeared at the fungal infection bulb, where it is likely to be secreted with the help of the exocyst complex. A cyrA-deletion strain was less virulent, and the time from worm capture to paralysis was extended. Heterologous expression of CyrA in C. elegans reduced its lifespan. CyrA accumulated in C. elegans in coelomocytes where the protein possibly is inactivated. This is the first example that SSPs may be important in predatory microbial interactions.
Collapse
Affiliation(s)
- Nicole Wernet
- Karlsruhe Institute of Technology (KIT)—South Campus, Institute for Applied Biosciences, Dept. of Microbiology, Karlsruhe, Germany
| | - Valentin Wernet
- Karlsruhe Institute of Technology (KIT)—South Campus, Institute for Applied Biosciences, Dept. of Microbiology, Karlsruhe, Germany
| | - Reinhard Fischer
- Karlsruhe Institute of Technology (KIT)—South Campus, Institute for Applied Biosciences, Dept. of Microbiology, Karlsruhe, Germany
| |
Collapse
|
5
|
Shehat MG, Aranjuez GF, Kim J, Jewett TJ. The Chlamydia trachomatis Tarp effector targets the Hippo pathway. Biochem Biophys Res Commun 2021; 562:133-138. [PMID: 34052658 DOI: 10.1016/j.bbrc.2021.05.057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 05/17/2021] [Indexed: 11/18/2022]
Abstract
Chlamydia trachomatis injects bacterial effector proteins into human epithelial cells to facilitate the establishment of new infections. The chlamydial type III secreted effector translocated actin recruiting phosphoprotein (Tarp) has been shown to nucleate and bundle actin filaments. It is also believed to initiate new signaling pathways via an N-terminal phosphorylation domain. A comprehensive understanding of the host pathways that are controlled by Tarp to aid in the establishment of a successful infection remains incomplete. To gain further insight into the cell signaling regulated by Tarp, we generated transgenic fruit flies engineered to express the N-terminal domain of Tarp. As many signaling pathways are conserved between flies and mammals, we hypothesized that expression of the Tarp N-domain in the fruit fly might disrupt key pathways, resulting in developmental defects. Tarp N-domain expression in the fruit fly resulted in a mechanosensory bristle duplication phenotype similar to a previously characterized fly phenotype found to be a consequence of defects in the Hippo pathway. Tarp-dependent disruption of the Hippo pathway was confirmed in a C. trachomatis tissue culture infection model. The capability of Tarp to alter Hippo pathway signaling in infected epithelial cells is a previously unrecognized pathway commandeered by chlamydia and likely contributes to the establishment of chlamydia's intracellular niche.
Collapse
Affiliation(s)
- Michael G Shehat
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, University of Central Florida, College of Medicine, Orlando, FL, 32827, USA; Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - George F Aranjuez
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, University of Central Florida, College of Medicine, Orlando, FL, 32827, USA
| | - Jongeon Kim
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, University of Central Florida, College of Medicine, Orlando, FL, 32827, USA
| | - Travis J Jewett
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, University of Central Florida, College of Medicine, Orlando, FL, 32827, USA.
| |
Collapse
|
6
|
Harnish JM, Link N, Yamamoto S. Drosophila as a Model for Infectious Diseases. Int J Mol Sci 2021; 22:2724. [PMID: 33800390 PMCID: PMC7962867 DOI: 10.3390/ijms22052724] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/11/2021] [Accepted: 02/14/2021] [Indexed: 12/19/2022] Open
Abstract
The fruit fly, Drosophila melanogaster, has been used to understand fundamental principles of genetics and biology for over a century. Drosophila is now also considered an essential tool to study mechanisms underlying numerous human genetic diseases. In this review, we will discuss how flies can be used to deepen our knowledge of infectious disease mechanisms in vivo. Flies make effective and applicable models for studying host-pathogen interactions thanks to their highly conserved innate immune systems and cellular processes commonly hijacked by pathogens. Drosophila researchers also possess the most powerful, rapid, and versatile tools for genetic manipulation in multicellular organisms. This allows for robust experiments in which specific pathogenic proteins can be expressed either one at a time or in conjunction with each other to dissect the molecular functions of each virulent factor in a cell-type-specific manner. Well documented phenotypes allow large genetic and pharmacological screens to be performed with relative ease using huge collections of mutant and transgenic strains that are publicly available. These factors combine to make Drosophila a powerful tool for dissecting out host-pathogen interactions as well as a tool to better understand how we can treat infectious diseases that pose risks to public health, including COVID-19, caused by SARS-CoV-2.
Collapse
Affiliation(s)
- J. Michael Harnish
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX 77030, USA; (J.M.H.); (N.L.)
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Nichole Link
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX 77030, USA; (J.M.H.); (N.L.)
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
- Howard Hughes Medical Institute, Houston, TX 77030, USA
| | - Shinya Yamamoto
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX 77030, USA; (J.M.H.); (N.L.)
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
- Department of Neuroscience, BCM, Houston, TX 77030, USA
- Development, Disease Models and Therapeutics Graduate Program, BCM, Houston, TX 77030, USA
| |
Collapse
|
7
|
Du J, Lin Z, Volovych O, Lu Z, Zou Z. A RhoGAP venom protein from Microplitis mediator suppresses the cellular response of its host Helicoverpa armigera. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 108:103675. [PMID: 32173445 DOI: 10.1016/j.dci.2020.103675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 03/09/2020] [Accepted: 03/09/2020] [Indexed: 06/10/2023]
Abstract
Female parasitoid wasps normally inject virulence factors together with eggs into their host to counter host immunity defenses. A newly identified RhoGAP protein in the venom of Microplitis mediator compromises the cellular immunity of its host, Helicoverpa armigera. RhoGAP1 proteins entered H. armigera hemocytes, and the host cellular cytoskeleton was disrupted. Depletion of MmGAP1 by injection of dsRNA or antibody increased the wasp egg encapsulation rate. An immunoprecipitation assay of overexpressed MmGAP1 protein in a Helicoverpa cell line showed that MmGAP1 interacts with many cellular cytoskeleton associated proteins as well as Rho GTPases. A yeast two-hybrid and a pull-down assay demonstrated that MmGAP1 interacts with H. armigera RhoA and Cdc42. These results show that the RhoGAP protein in M. mediator can destroy the H. armigera hemocyte cellular cytoskeleton, restrain host cellular immune defense, and increase the probability of successful parasitism.
Collapse
Affiliation(s)
- Jie Du
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhe Lin
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Olga Volovych
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhiqiang Lu
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhen Zou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China; Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, Huzhou University, Huzhou, 311300, China.
| |
Collapse
|
8
|
Ahad II, Hossain MM, Uddin MA, Bari ML, Hossain MS. Therapeutic Effect of Antibiotics Against Escherichia coli O157:H7 in Silk Moth Larvae Animal Model. Curr Microbiol 2020; 77:2172-2180. [PMID: 32417963 DOI: 10.1007/s00284-020-02023-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 05/07/2020] [Indexed: 10/24/2022]
Abstract
The increasing clinical incidence of antibiotic resistance in bacteria is a major global health care issue. Rampant use of antimicrobials is one of the major reasons of the dramatic rise in antibiotic-resistant bacterial strains. Suitable animal models are required to improve our understanding of bacterial pathogenicity, evolution and search for novel antibiotics. The larvae of the silk moth (commonly called silkworm), Bombyx mori, have been used as an animal model for testing the pathogenicity of a clinically isolated strain of enterohemorrhagic Escherichia coli O157:H7 upon injection through hemolymph. Here, we show that a foodborne E. coli O157:H7 strain can kill silkworm larvae upon injection through either hemolymph (blood) or midgut. Bacterial number in the hemolymph started to increase after 3 h of injection into hemolymph, while the number of viable circulating hemocytes decreased. Administration of four well-known antibiotics into the larval hemolymph up to 100 µg per larva showed therapeutic effect with varying efficacies against E. coli O157:H7 with ceftriaxone and imipenem showing better effect. Our findings indicate that silkworm larvae can be used as an animal model to screen for novel antibiotics that are effective against E. coli O157:H7.
Collapse
Affiliation(s)
- Inteshar Ibn Ahad
- Department of Biochemistry and Microbiology, School of Health and Life Sciences, North South University, Bashundhara, Dhaka, 1229, Bangladesh
| | - M Mahtab Hossain
- Department of Biochemistry and Microbiology, School of Health and Life Sciences, North South University, Bashundhara, Dhaka, 1229, Bangladesh
| | - M Aftab Uddin
- Bangladesh Sericulture Research and Training Institute, Rajshahi, Bangladesh
| | - M Latiful Bari
- Center for Advanced Research in Sciences, University of Dhaka, Dhaka, Bangladesh
| | - Muktadir S Hossain
- Department of Biochemistry and Microbiology, School of Health and Life Sciences, North South University, Bashundhara, Dhaka, 1229, Bangladesh.
| |
Collapse
|
9
|
Teixeira N, Varahan S, Gorman MJ, Palmer KL, Zaidman-Remy A, Yokohata R, Nakayama J, Hancock LE, Jacinto A, Gilmore MS, de Fátima Silva Lopes M. Drosophila host model reveals new enterococcus faecalis quorum-sensing associated virulence factors. PLoS One 2013; 8:e64740. [PMID: 23734216 PMCID: PMC3667150 DOI: 10.1371/journal.pone.0064740] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 04/17/2013] [Indexed: 01/30/2023] Open
Abstract
Enterococcus faecalis V583 is a vancomycin-resistant clinical isolate which belongs to the hospital-adapted clade, CC2. This strain harbours several factors that have been associated with virulence, including the fsr quorum-sensing regulatory system that is known to control the expression of GelE and SprE proteases. To discriminate between genes directly regulated by Fsr, and those indirectly regulated as the result of protease expression or activity, we compared gene expression in isogenic mutants of V583 variously defective in either Fsr quorum sensing or protease expression. Quorum sensing was artificially induced by addition of the quorum signal, GBAP, exogenously in a controlled manner. The Fsr regulon was found to be restricted to five genes, gelE, sprE, ef1097, ef1351 and ef1352. Twelve additional genes were found to be dependent on the presence of GBAP-induced proteases. Induction of GelE and SprE by GBAP via Fsr resulted in accumulation of mRNA encoding lrgAB, and this induction was found to be lytRS dependent. Drosophila infection was used to discern varying levels of toxicity stemming from mutations in the fsr quorum regulatory system and the genes that it regulates, highlighting the contribution of LrgAB and bacteriocin EF1097 to infection toxicity. A contribution of SprE to infection toxicity was also detected. This work brought to light new players in E. faecalis success as a pathogen and paves the way for future studies on host tolerance mechanisms to infections caused by this important nosocomial pathogen.
Collapse
Affiliation(s)
- Neuza Teixeira
- ITQB Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
- Departments of Ophthalmology, and Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
- CEDOC Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Sriram Varahan
- Division of Biology, Kansas State University, Manhattan, Kansas, United States of America
| | - Matthew J. Gorman
- Division of Biology, Kansas State University, Manhattan, Kansas, United States of America
| | - Kelli L. Palmer
- Departments of Ophthalmology, and Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Anna Zaidman-Remy
- CEDOC Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Ryoji Yokohata
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, Fukuoka, Japan
| | - Jiro Nakayama
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, Fukuoka, Japan
| | - Lynn E. Hancock
- Division of Biology, Kansas State University, Manhattan, Kansas, United States of America
| | - António Jacinto
- CEDOC Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Michael S. Gilmore
- Departments of Ophthalmology, and Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Maria de Fátima Silva Lopes
- ITQB Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
- IBET Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- * E-mail:
| |
Collapse
|
10
|
Linderman JA, Chambers MC, Gupta AS, Schneider DS. Infection-related declines in chill coma recovery and negative geotaxis in Drosophila melanogaster. PLoS One 2012; 7:e41907. [PMID: 23028430 PMCID: PMC3441536 DOI: 10.1371/journal.pone.0041907] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 06/29/2012] [Indexed: 01/25/2023] Open
Abstract
Studies of infection in Drosophila melanogaster provide insight into both mechanisms of host resistance and tolerance of pathogens. However, research into the pathways involved in these processes has been limited by the relatively few metrics that can be used to measure sickness and health throughout the course of infection. Here we report measurements of infection-related declines in flies' performance on two different behavioral assays. D. melanogaster are slower to recover from a chill-induced coma during infection with either Listeria monocytogenes or Streptococcus pneumoniae. L. monocytogenes infection also impacts flies' performance during a negative geotaxis assay, revealing a decline in their rate of climbing as part of their innate escape response after startle. In addition to providing new measures for assessing health, these assays also suggest pathological consequences of and metabolic shifts that may occur over the course of an infection.
Collapse
Affiliation(s)
- Jessica A. Linderman
- Department of Microbiology and Immunology, Stanford University, Stanford, California, United States of America
| | - Moria C. Chambers
- Department of Microbiology and Immunology, Stanford University, Stanford, California, United States of America
| | - Avni S. Gupta
- Department of Microbiology and Immunology, Stanford University, Stanford, California, United States of America
| | - David S. Schneider
- Department of Microbiology and Immunology, Stanford University, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
11
|
Reid DW, Muyskens JB, Neal JT, Gaddini GW, Cho LY, Wandler AM, Botham CM, Guillemin K. Identification of genetic modifiers of CagA-induced epithelial disruption in Drosophila. Front Cell Infect Microbiol 2012; 2:24. [PMID: 22919616 PMCID: PMC3417398 DOI: 10.3389/fcimb.2012.00024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 02/16/2012] [Indexed: 12/13/2022] Open
Abstract
Helicobacter pylori strains containing the CagA protein are associated with high risk of gastric diseases including atrophic gastritis, peptic ulcers, and gastric cancer. CagA is injected into host cells via a Type IV secretion system where it activates growth factor-like signaling, disrupts cell-cell junctions, and perturbs host cell polarity. Using a transgenic Drosophila model, we have shown that CagA expression disrupts the morphogenesis of epithelial tissues such as the adult eye. Here we describe a genetic screen to identify modifiers of CagA-induced eye defects. We determined that reducing the copy number of genes encoding components of signaling pathways known to be targeted by CagA, such as the epidermal growth factor receptor (EGFR), modified the CagA-induced eye phenotypes. In our screen of just over half the Drosophila genome, we discovered 12 genes that either suppressed or enhanced CagA's disruption of the eye epithelium. Included in this list are genes involved in epithelial integrity, intracellular trafficking, and signal transduction. We investigated the mechanism of one suppressor, encoding the epithelial polarity determinant and junction protein Coracle, which is homologous to the mammalian Protein 4.1. We found that loss of a single copy of coracle improved the organization and integrity of larval retinal epithelia expressing CagA, but did not alter CagA's localization to cell junctions. Loss of a single copy of the coracle antagonist crumbs enhanced CagA-associated disruption of the larval retinal epithelium, whereas overexpression of crumbs suppressed this phenotype. Collectively, these results point to new cellular pathways whose disruption by CagA are likely to contribute to H. pylori-associated disease pathology.
Collapse
Affiliation(s)
- David W Reid
- Institute of Molecular Biology, University of Oregon, Eugene OR, USA
| | | | | | | | | | | | | | | |
Collapse
|