1
|
Ciriza J, Saenz Del Burgo L, Gurruchaga H, Borras FE, Franquesa M, Orive G, Hernández RM, Pedraz JL. Graphene oxide enhances alginate encapsulated cells viability and functionality while not affecting the foreign body response. Drug Deliv 2018; 25:1147-1160. [PMID: 29781340 PMCID: PMC6058697 DOI: 10.1080/10717544.2018.1474966] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/04/2018] [Accepted: 05/07/2018] [Indexed: 12/14/2022] Open
Abstract
The combination of protein-coated graphene oxide (GO) and microencapsulation technology has moved a step forward in the challenge of improving long-term alginate encapsulated cell survival and sustainable therapeutic protein release, bringing closer its translation from bench to the clinic. Although this new approach in cell microencapsulation represents a great promise for long-term drug delivery, previous studies have been performed only with encapsulated murine C2C12 myoblasts genetically engineered to secrete murine erythropoietin (C2C12-EPO) within 160 µm diameter hybrid alginate protein-coated GO microcapsules implanted into syngeneic mice. Here, we show that encapsulated C2C12-EPO myoblasts survive longer and release more therapeutic protein by doubling the micron diameter of hybrid alginate-protein-coated GO microcapsules to 380 µm range. Encapsulated mesenchymal stem cells (MSC) genetically modified to secrete erythropoietin (D1-MSCs-EPO) within 380 µm-diameter hybrid alginate-protein-coated GO microcapsules confirmed this improvement in survival and sustained protein release in vitro. This improved behavior is reflected in the hematocrit increase of allogeneic mice implanted with both encapsulated cell types within 380 µm diameter hybrid alginate-protein-coated GO microcapsules, showing lower immune response with encapsulated MSCs. These results provide a new relevant step for the future clinical application of protein-coated GO on cell microencapsulation.
Collapse
Affiliation(s)
- Jesús Ciriza
- a Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine , CIBER-BBN , Vitoria-Gasteiz , Spain
- b NanoBioCel Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy , University of the Basque Country, UPV/EHU , Vitoria-Gasteiz , Spain
| | - Laura Saenz Del Burgo
- a Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine , CIBER-BBN , Vitoria-Gasteiz , Spain
- b NanoBioCel Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy , University of the Basque Country, UPV/EHU , Vitoria-Gasteiz , Spain
| | - Haritz Gurruchaga
- a Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine , CIBER-BBN , Vitoria-Gasteiz , Spain
- b NanoBioCel Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy , University of the Basque Country, UPV/EHU , Vitoria-Gasteiz , Spain
| | - Francesc E Borras
- c REMAR-IVECAT Group, Health Science Research Institute Germans Trias i Pujol , Badalona , Spain
- d Department of Cell Biology, Physiology and Immunology , Universitat Autònoma de Barcelona , Bellaterra , Spain
- e Nephrology Service, Germans Trias i Pujol University Hospital , Badalona , Spain
| | - Marcella Franquesa
- c REMAR-IVECAT Group, Health Science Research Institute Germans Trias i Pujol , Badalona , Spain
- e Nephrology Service, Germans Trias i Pujol University Hospital , Badalona , Spain
| | - Gorka Orive
- a Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine , CIBER-BBN , Vitoria-Gasteiz , Spain
- b NanoBioCel Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy , University of the Basque Country, UPV/EHU , Vitoria-Gasteiz , Spain
| | - Rosa Maria Hernández
- a Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine , CIBER-BBN , Vitoria-Gasteiz , Spain
- b NanoBioCel Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy , University of the Basque Country, UPV/EHU , Vitoria-Gasteiz , Spain
| | - José Luis Pedraz
- a Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine , CIBER-BBN , Vitoria-Gasteiz , Spain
- b NanoBioCel Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy , University of the Basque Country, UPV/EHU , Vitoria-Gasteiz , Spain
| |
Collapse
|
2
|
Diel D, Lagranha VL, Schuh RS, Bruxel F, Matte U, Teixeira HF. Optimization of alginate microcapsules containing cells overexpressing α-l-iduronidase using Box-Behnken design. Eur J Pharm Sci 2017; 111:29-37. [PMID: 28882767 DOI: 10.1016/j.ejps.2017.09.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 08/28/2017] [Accepted: 09/04/2017] [Indexed: 02/07/2023]
Abstract
Mucopolysaccharidosis type I (MPS I) is an autosomal recessive disease caused by deficiency of α-l-iduronidase (IDUA), which results in the lysosomal accumulation of glycosaminoglycans (GAG) leading to widespread clinical manifestations. The microencapsulation of IDUA overexpressing recombinant cells has been considered as a promising strategy for the treatment of MPS I. This study aimed at the optimization of alginate microcapsules containing recombinant BHK (Baby Hamster Kidney) cells (rBHK) overexpressing IDUA produced by electrostatic extrusion technique. The alginate microcapsule (MC-A) optimization study was carried out by means of an experimental Box-Behnken Design that allowed the simultaneous evaluation of the influence of voltage (kV), alginate/cell suspension flow (mL/h), and alginate concentration (%) on size and IDUA activity. The optimal conditions of voltage (10kV), flow (25mL/h), and alginate concentration (1.3%) made possible to obtain the smallest microcapsules showing the highest IDUA activity. After optimization, the microcapsules were sequentially coated with PLL and alginate (MC-APA) to increase their stability. MC-A and MC-APA presented monodisperse populations (span<1.22) with an average diameter of less than 350μm. The coating increased the mechanical stability of MC-APA by about 6-fold and modulated the permeability to the enzyme. Surface analyzes of MC-APA showed the presence of PLL bands, suggesting that the last alginate layer appears to have only partially coated the PLL. After 30days of subcutaneous implantation of the MC-APA microcapsules containing rBHK cells in a MPS I murine model, a significant increase in IDUA activity was observed in the skin near the implant. Histological analysis revealed an inflammatory infiltrate at the application site, which did not prevent the release of the enzyme under the conditions evaluated. Taken together, the overall results demonstrate the feasibility of MC-APA as a potential alternative for local treatment of MPS I.
Collapse
Affiliation(s)
- Dirnete Diel
- Programa de Pós-Graduação em Ciências Farmacêuticas da Universidade Federal do Rio Grande do Sul (UFRGS), Faculdade de Farmácia, Av. Ipiranga 2752, 90610-000, Porto Alegre, RS, Brazil
| | - Valeska Lizzi Lagranha
- Programa de Pós-Graduação em Genética e Biologia Molecular da Universidade Federal do Rio Grande do Sul (UFRGS), Campus do Vale, Av. Bento Gonçalves, 9500, 91501-970 Porto Alegre, RS, Brazil
| | - Roselena Silvestri Schuh
- Programa de Pós-Graduação em Ciências Farmacêuticas da Universidade Federal do Rio Grande do Sul (UFRGS), Faculdade de Farmácia, Av. Ipiranga 2752, 90610-000, Porto Alegre, RS, Brazil
| | - Fernanda Bruxel
- Programa de Pós-Graduação em Ciências Farmacêuticas da Universidade Federal do Pampa (UNIPAMPA), BR 472, km 592, 97508-000, Uruguaiana, RS, Brazil
| | - Ursula Matte
- Programa de Pós-Graduação em Genética e Biologia Molecular da Universidade Federal do Rio Grande do Sul (UFRGS), Campus do Vale, Av. Bento Gonçalves, 9500, 91501-970 Porto Alegre, RS, Brazil
| | - Helder Ferreira Teixeira
- Programa de Pós-Graduação em Ciências Farmacêuticas da Universidade Federal do Rio Grande do Sul (UFRGS), Faculdade de Farmácia, Av. Ipiranga 2752, 90610-000, Porto Alegre, RS, Brazil.
| |
Collapse
|
3
|
Choińska-Pulit A, Mituła P, Śliwka P, Łaba W, Skaradzińska A. Bacteriophage encapsulation: Trends and potential applications. Trends Food Sci Technol 2015. [DOI: 10.1016/j.tifs.2015.07.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
4
|
Gañán-Calvo A, Montanero J, Martín-Banderas L, Flores-Mosquera M. Building functional materials for health care and pharmacy from microfluidic principles and Flow Focusing. Adv Drug Deliv Rev 2013; 65:1447-69. [PMID: 23954401 DOI: 10.1016/j.addr.2013.08.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 08/02/2013] [Accepted: 08/02/2013] [Indexed: 12/11/2022]
Abstract
In this review, we aim at establishing a relationship between the fundamentals of the microfluidics technologies used in the Pharmacy field, and the achievements accomplished by those technologies. We describe the main methods for manufacturing micrometer drops, bubbles, and capsules, as well as the corresponding underlying physical mechanisms. In this regard, the review is intended to show non-specialist readers the dynamical processes which determine the success of microfluidics techniques. Flow focusing (FF) is a droplet-based method widely used to produce different types of fluid entities on a continuous basis by applying an extensional co-flow. We take this technique as an example to illustrate how microfluidics technologies for drug delivery are progressing from a deep understanding of the physics of fluids involved. Specifically, we describe the limitations of FF, and review novel methods which enhance its stability and robustness. In the last part of this paper, we review some of the accomplishments of microfluidics when it comes to drug manufacturing and delivery. Special attention is paid to the production of the microencapsulated form because this fluidic structure gathers the main functionalities sought for in Pharmacy. We also show how FF has been adapted to satisfy an ample variety of pharmaceutical requirements to date.
Collapse
|
5
|
Zhang W, Zhao S, Rao W, Snyder J, Choi JK, Wang J, Khan IA, Saleh NB, Mohler PJ, Yu J, Hund TJ, Tang C, He X. A Novel Core-Shell Microcapsule for Encapsulation and 3D Culture of Embryonic Stem Cells. J Mater Chem B 2012; 2013:1002-1009. [PMID: 23505611 DOI: 10.1039/c2tb00058j] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In this study, we report the preparation of a novel microcapsule of ~ 100 μm with a liquid (as compared to solid-like alginate hydrogel) core and an alginate-chitosan-alginate (ACA) shell for encapsulation and culture of embryonic stem (ES) cells in the miniaturized 3D space of the liquid core. Murine R1 ES cells cultured in the microcapsules were found to survive (> 90%) well and proliferate to form either a single aggregate of pluripotent cells or embryoid body (EB) of more differentiated cells in each microcapsule within 7 days, dependent on the culture medium used. This novel microcapsule technology allows massive production of the cell aggregates or EBs of uniform size and controllable pluripotency, which is important for the practical application of stem cell based therapy. Moreover, the semipermeable ACA shell was found to significantly reduce immunoglobulin G (IgG) binding to the encapsulated cells by up to 8.2 times, compared to non-encapsulated cardiac fibroblasts, mesenchymal stem cells, and ES cells. This reduction should minimize inflammatory and immune responses induced damage to the cells implanted in vivo becasue IgG binding is an important first step of the undesired host responses. Therefore, the ACA microcapsule with selective shell permeability should be of importance to advance the emerging cell-based medicine.
Collapse
Affiliation(s)
- Wujie Zhang
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA ; Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA ; Biomolecular Engineering Program, Department of Physics and Chemistry, Milwaukee School of Engineering, Milwaukee, WI 53202, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Santos E, Orive G, Calvo A, Catena R, Fernández-Robredo P, Layana AG, Hernández R, Pedraz J. Optimization of 100μm alginate-poly-l-lysine-alginate capsules for intravitreous administration. J Control Release 2012; 158:443-50. [DOI: 10.1016/j.jconrel.2011.09.079] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2011] [Revised: 09/15/2011] [Accepted: 09/18/2011] [Indexed: 12/11/2022]
|
7
|
Zhang W, He X. Microencapsulating and Banking Living Cells for Cell-Based Medicine. JOURNAL OF HEALTHCARE ENGINEERING 2011; 2:427-446. [PMID: 22180835 DOI: 10.1260/2040-2295.2.4.427] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A major challenge to the eventual success of the emerging cell-based medicine such as tissue engineering, regenerative medicine, and cell transplantation is the limited availability of the desired cell sources. This challenge can be addressed by cell microencapsulation to overcome the undesired immune response (i.e., to achieve immunoisolation) so that non-autologous cells can be used to treat human diseases, and by cell/tissue preservation to bank living cells for wide distribution to end users so that they are readily available when needed in the future. This review summarizes the status quo of research in both cell microencapsulation and banking the microencapsulated cells. It is concluded with a brief outlook of future research directions in this important field.
Collapse
Affiliation(s)
- Wujie Zhang
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210
| | | |
Collapse
|
8
|
Kontturi LS, Yliperttula M, Toivanen P, Määttä A, Määttä AM, Urtti A. A laboratory-scale device for the straightforward production of uniform, small sized cell microcapsules with long-term cell viability. J Control Release 2011; 152:376-81. [DOI: 10.1016/j.jconrel.2011.03.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 03/01/2011] [Accepted: 03/06/2011] [Indexed: 01/01/2023]
|