1
|
Szücs D, Szabó JP, Arató V, Gyuricza B, Szikra D, Tóth I, Képes Z, Trencsényi G, Fekete A. Investigation of the Effect on the Albumin Binding Moiety for the Pharmacokinetic Properties of 68Ga-, 205/206Bi-, and 177Lu-Labeled NAPamide-Based Radiopharmaceuticals. Pharmaceuticals (Basel) 2023; 16:1280. [PMID: 37765089 PMCID: PMC10536547 DOI: 10.3390/ph16091280] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/31/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Although radiolabeled alpha-melanocyte stimulating hormone-analogue NAPamide derivatives are valuable melanoma-specific diagnostic probes, their rapid elimination kinetics and high renal uptake may preclude them from being used in clinical settings. We aimed at improving the pharmacokinetics of radiolabeled DOTA-NAPamide compounds by incorporating a 4-(p-iodo-phenyl)-butanoic acid (IPB) into the molecules. Followed by 68Ga-, 205/206Bi-, and 177Lu-labelling, the radiopharmaceuticals ([68Ga]Ga-DOTA-IPB-NAPamide, [205/206Bi]Bi-DOTA-IPB-NAPamide, [177Lu]Lu-DOTA-IPB-NAPamide) were characterized in vitro. To test the imaging behavior of the IPB-containing probes, B16F10 tumor-bearing C57BL/6 mice were subjected to in vivo microPET/microSPECT/CT imaging and ex vivo biodistribution studies. All tracers were stable in vitro, with radiochemical purity exceeding 98%. The use of albumin-binding moiety lengthened the in vivo biological half-life of the IPB-carrying radiopharmaceuticals, resulting in elevated tumor accumulation. Both [68Ga]Ga-DOTA-IPB-NAPamide (5.06 ± 1.08 %ID/g) and [205/206Bi]Bi-DOTA-IPB-NAPamide (4.50 ± 0.98 %ID/g) exhibited higher B16F10 tumor concentrations than their matches without the albumin-binding residue ([68Ga]Ga-DOTA-NAPamide and [205/206Bi]Bi-DOTA-NAPamide: 1.18 ± 0.27 %ID/g and 3.14 ± 0.32; respectively), however; the large amounts of off-target radioactivity do not confirm the benefits of half-life extension for short-lived isotopes. Enhanced [177Lu]Lu-DOTA-IPB-NAPamide tumor uptake even 24 h post-injection proved the advantage of IPB-based prolonged circulation time regarding long-lived radionuclides, although the significant background noise must be addressed in this case as well.
Collapse
Affiliation(s)
- Dániel Szücs
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, H-4032 Debrecen, Hungary; (D.S.); (J.P.S.); (V.A.); (B.G.); (D.S.); (Z.K.); (G.T.)
- Department of Physical Chemistry, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary;
- Doctoral School of Chemistry, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
| | - Judit P. Szabó
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, H-4032 Debrecen, Hungary; (D.S.); (J.P.S.); (V.A.); (B.G.); (D.S.); (Z.K.); (G.T.)
- Doctoral School of Clinical Medicine, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, H-4032 Debrecen, Hungary
| | - Viktória Arató
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, H-4032 Debrecen, Hungary; (D.S.); (J.P.S.); (V.A.); (B.G.); (D.S.); (Z.K.); (G.T.)
- Doctoral School of Pharmaceutical Sciences, Faculty of Pharmacy, University of Debrecen, Nagyerdei krt. 98, H-4032 Debrecen, Hungary
| | - Barbara Gyuricza
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, H-4032 Debrecen, Hungary; (D.S.); (J.P.S.); (V.A.); (B.G.); (D.S.); (Z.K.); (G.T.)
| | - Dezső Szikra
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, H-4032 Debrecen, Hungary; (D.S.); (J.P.S.); (V.A.); (B.G.); (D.S.); (Z.K.); (G.T.)
| | - Imre Tóth
- Department of Physical Chemistry, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary;
| | - Zita Képes
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, H-4032 Debrecen, Hungary; (D.S.); (J.P.S.); (V.A.); (B.G.); (D.S.); (Z.K.); (G.T.)
| | - György Trencsényi
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, H-4032 Debrecen, Hungary; (D.S.); (J.P.S.); (V.A.); (B.G.); (D.S.); (Z.K.); (G.T.)
| | - Anikó Fekete
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, H-4032 Debrecen, Hungary; (D.S.); (J.P.S.); (V.A.); (B.G.); (D.S.); (Z.K.); (G.T.)
| |
Collapse
|
2
|
Specific Targeting of Melanotic Cells with Peptide Ligated Photosensitizers for Photodynamic Therapy. Sci Rep 2017; 7:15750. [PMID: 29146972 PMCID: PMC5691209 DOI: 10.1038/s41598-017-15142-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 10/18/2017] [Indexed: 02/05/2023] Open
Abstract
A strategy combining covalent conjugation of photosensitizers to a peptide ligand directed to the melanocortin 1 (MC1) receptor with the application of sequential LED light dosage at near-IR wavelengths was developed to achieve specific cytotoxicity to melanocytes and melanoma (MEL) with minimal collateral damage to surrounding cells such as keratinocytes (KER). The specific killing of melanotic cells by targeted photodynamic therapy (PDT) described in this study holds promise as a potentially effective adjuvant therapeutic method to control benign skin hyperpigmentation or superficial melanotic malignancy such as Lentigo Maligna Melanoma (LMM).
Collapse
|
3
|
Ericson MD, Lensing CJ, Fleming KA, Schlasner KN, Doering SR, Haskell-Luevano C. Bench-top to clinical therapies: A review of melanocortin ligands from 1954 to 2016. Biochim Biophys Acta Mol Basis Dis 2017; 1863:2414-2435. [PMID: 28363699 PMCID: PMC5600687 DOI: 10.1016/j.bbadis.2017.03.020] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 03/21/2017] [Accepted: 03/27/2017] [Indexed: 10/19/2022]
Abstract
The discovery of the endogenous melanocortin agonists in the 1950s have resulted in sixty years of melanocortin ligand research. Early efforts involved truncations or select modifications of the naturally occurring agonists leading to the development of many potent and selective ligands. With the identification and cloning of the five known melanocortin receptors, many ligands were improved upon through bench-top in vitro assays. Optimization of select properties resulted in ligands adopted as clinical candidates. A summary of every melanocortin ligand is outside the scope of this review. Instead, this review will focus on the following topics: classic melanocortin ligands, selective ligands, small molecule (non-peptide) ligands, ligands with sex-specific effects, bivalent and multivalent ligands, and ligands advanced to clinical trials. Each topic area will be summarized with current references to update the melanocortin field on recent progress. This article is part of a Special Issue entitled: Melanocortin Receptors - edited by Ya-Xiong Tao.
Collapse
Affiliation(s)
- Mark D Ericson
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Cody J Lensing
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Katlyn A Fleming
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Katherine N Schlasner
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Skye R Doering
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | | |
Collapse
|
4
|
Seek & Destroy, use of targeting peptides for cancer detection and drug delivery. Bioorg Med Chem 2017; 26:2797-2806. [PMID: 28893601 DOI: 10.1016/j.bmc.2017.08.052] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 08/14/2017] [Accepted: 08/30/2017] [Indexed: 12/21/2022]
Abstract
Accounting for 16 million new cases and 9 million deaths annually, cancer leaves a great number of patients helpless. It is a complex disease and still a major challenge for the scientific and medical communities. The efficacy of conventional chemotherapies is often poor and patients suffer from off-target effects. Each neoplasm exhibits molecular signatures - sometimes in a patient specific manner - that may completely differ from the organ of origin, may be expressed in markedly higher amounts and/or in different location compared to the normal tissue. Although adding layers of complexity in the understanding of cancer biology, this cancer-specific signature provides an opportunity to develop targeting agents for early detection, diagnosis, and therapeutics. Chimeric antibodies, recombinant proteins or synthetic polypeptides have emerged as excellent candidates for specific homing to peripheral and central nervous system cancers. Specifically, peptide ligands benefit from their small size, easy and affordable production, high specificity, and remarkable flexibility regarding their sequence and conjugation possibilities. Coupled to imaging agents, chemotherapies and/or nanocarriers they have shown to increase the on-site delivery, thus allowing better tumor mass contouring in imaging and increased efficacy of the chemotherapies associated with reduced adverse effects. Therefore, some of the peptides alone or in combination have been tested in clinical trials to treat patients. Peptides have been well-tolerated and shown absence of toxicity. This review aims to offer a view on tumor targeting peptides that are either derived from natural peptide ligands or identified using phage display screening. We also include examples of peptides targeting the high-grade malignant tumors of the central nervous system as an example of the complex therapeutic management due to the tumor's location. Peptide vaccines are outside of the scope of this review.
Collapse
|
5
|
Bapst JP, Eberle AN. Receptor-Mediated Melanoma Targeting with Radiolabeled α-Melanocyte-Stimulating Hormone: Relevance of the Net Charge of the Ligand. Front Endocrinol (Lausanne) 2017; 8:93. [PMID: 28491052 PMCID: PMC5405074 DOI: 10.3389/fendo.2017.00093] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 04/10/2017] [Indexed: 12/03/2022] Open
Abstract
A majority of melanotic and amelanotic melanomas overexpress melanocortin type 1 receptors (MC1Rs) for α-melanocyte-stimulating hormone. Radiolabeled linear or cyclic analogs of α-MSH have a great potential as diagnostic or therapeutic tools for the management of malignant melanoma. Compounds such as [111In]DOTA-NAP-amide exhibit high affinity for the MC1R in vitro, good tumor uptake in vivo, but they may suffer from relatively high kidney uptake and retention in vivo. We have shown previously that the introduction of negative charges into radiolabeled DOTA-NAP-amide peptide analogs may enhance their excretion and reduce kidney retention. To address the question of where to place negative charges within the ligand, we have extended these studies by designing two novel peptides, Ac-Nle-Asp-His-d-Phe-Arg-Trp-Gly-Lys(DOTA)-d-Asp-d-Asp-OH (DOTA-NAP-d-Asp-d-Asp) with three negative charges at the C-terminal end (overall net charge of the molecule -2) and DOTA-Gly-Tyr(P)-Nle-Asp-His-d-Phe-Arg-Trp-NH2 (DOTA-Phospho-MSH2-9) with two negative charges in the N-terminal region (net charge -1). The former peptide showed markedly reduced receptor affinity and biological activity by >10-fold compared to DOTA-NAP-amide as reference compound, and the latter peptide displayed similar bioactivity and receptor affinity as the reference compound. The uptake by melanoma tumor tissue of [111In]DOTA-Phospho-MSH2-9 was 7.33 ± 0.47 %ID/g 4 h after injection, i.e., almost equally high as with [111In]DOTA-NAP-amide. The kidney retention was 2.68 ± 0.18 %ID/g 4 h after injection and hence 44% lower than that of [111In]DOTA-NAP-amide. Over an observation period from 4 to 48 h, the tumor-to-kidney ratio of [111In]DOTA-Phospho-MSH2-9 was 35% more favorable than that of the reference compound. In a comparison of DOTA-NAP-d-Asp-d-Asp, DOTA-Phospho-MSH2-9 and DOTA-NAP-amide with five previously published analogs of DOTA-NAP-amide that altogether cover a range of peptides with an overall net charge between +2 and -2, we now demonstrate that a net charge of -1, with the extra negative charges preferably placed in the N-terminal region, has led to the lowest kidney uptake and retention. Charges of +2 or -2 markedly increased kidney uptake and retention. In conclusion, the novel DOTA-Phospho-MSH2-9 may represent a new lead compound for negatively charged linear MC1R ligands that can be further developed into a clinically relevant melanoma targeting radiopeptide.
Collapse
Affiliation(s)
- Jean-Philippe Bapst
- Laboratory of Endocrinology, Department of Biomedicine, University Hospital and University Children’s Hospital, University of Basel, Basel, Switzerland
| | - Alex N. Eberle
- Laboratory of Endocrinology, Department of Biomedicine, University Hospital and University Children’s Hospital, University of Basel, Basel, Switzerland
- Collegium Helveticum, ETH Zurich, Zurich, Switzerland
- *Correspondence: Alex N. Eberle,
| |
Collapse
|
6
|
Gao F, Sihver W, Jurischka C, Bergmann R, Haase-Kohn C, Mosch B, Steinbach J, Carta D, Bolzati C, Calderan A, Pietzsch J, Pietzsch HJ. Radiopharmacological characterization of ⁶⁴Cu-labeled α-MSH analogs for potential use in imaging of malignant melanoma. Amino Acids 2016; 48:833-847. [PMID: 26643502 DOI: 10.1007/s00726-015-2131-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 11/04/2015] [Indexed: 10/22/2022]
Abstract
The melanocortin-1 receptor (MC1R) plays an important role in melanoma growth, angiogenesis and metastasis, and is overexpressed in melanoma cells. α-Melanocyte stimulating hormone (α-MSH) and derivatives are known to bind with high affinity at this receptor that provides the potential for selective targeting of melanoma. In this study, one linear α-MSH-derived peptide Nle-Asp-His-D-Phe-Arg-Trp-Gly-NH2 (NAP-NS1) without linker and with εAhx-β-Ala linker, and a cyclic α-MSH derivative, [Lys-Glu-His-D-Phe-Arg-Trp-Glu]-Arg-Pro-Val-NH2 (NAP-NS2) with εAhx-β-Ala linker were conjugated with p-SCN-Bn-NOTA and labeled with (64)Cu. Radiochemical and radiopharmacological investigations were performed with regard to transchelation, stability, lipophilicity and in vitro binding assays as well as biodistribution in healthy rats. No transchelation reactions, but high metabolic stability and water solubility were demonstrated. The linear derivatives showed higher affinity than the cyclic one. [(64)Cu]Cu-NOTA-εAhx-β-Ala-NAP-NS1 ([(64)Cu]Cu-2) displayed rapid cellular association and dissociation in murine B16F10 cell homogenate. All [(64)Cu]Cu-labeled conjugates exhibited affinities in the low nanomolar range in B16F10. [(64)Cu]Cu-2 showed also high affinity in human MeWo and TXM13 cell homogenate. In vivo studies suggested that [(64)Cu]Cu-2 was stable, with about 85 % of intact peptide in rat plasma at 2 h p.i. Biodistribution confirmed the renal pathway as the major elimination route. The uptake of [(64)Cu]Cu-2 in the kidney was 5.9 % ID/g at 5 min p.i. and decreased to 2.0 % ID/g at 60 min p.i. Due to the prospective radiochemical and radiopharmacological properties of the linear α-MSH derivative [(64)Cu]Cu-2, this conjugate is a promising candidate for tracer development in human melanoma imaging.
Collapse
Affiliation(s)
- Feng Gao
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328, Dresden, Germany
- Department of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
| | - Wiebke Sihver
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328, Dresden, Germany.
| | - Christoph Jurischka
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328, Dresden, Germany
- Brandenburg University of Technology Cottbus-Senftenberg, Cottbus, Germany
| | - Ralf Bergmann
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Cathleen Haase-Kohn
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Birgit Mosch
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Jörg Steinbach
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328, Dresden, Germany
- Department of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
| | - Davide Carta
- Department of Pharmacological and Pharmaceutical Sciences, University of Padua, 35131, Padua, Italy
| | | | | | - Jens Pietzsch
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328, Dresden, Germany
- Department of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
| | - Hans-Jürgen Pietzsch
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328, Dresden, Germany
- Department of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
| |
Collapse
|
7
|
Abstract
Recent efforts in genomic research have enabled the characterization of molecular mechanisms underlying many types of cancers, ushering novel approaches for diagnosis and therapeutics. Melanoma is a molecularly heterogeneous disease, as many genetic alterations have been identified and the clinical features can vary. Although discoveries of frequent mutations including BRAF have already made clinically significant impact on patient care, there is a growing body of literature suggesting a role for additional mutations, driver and passenger types, in disease pathophysiology. Although some mutations have been strongly associated with clinical phenotypes of melanomas (such as physical distribution or morphologic subtype), the function or implications of many of the recently identified mutations remains less clear. The phenotypic and clinical impact of genomic mutations in melanoma remains a promising opportunity for progress in the care of melanoma patients.
Collapse
Affiliation(s)
- Elena B Hawryluk
- Dermatology Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115 Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114
| | - Hensin Tsao
- Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114
| |
Collapse
|
8
|
Evaluation of two (125)I-radiolabeled acridine derivatives for Auger-electron radionuclide therapy of melanoma. Invest New Drugs 2014; 32:587-97. [PMID: 24691673 DOI: 10.1007/s10637-014-0086-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 03/05/2014] [Indexed: 12/26/2022]
Abstract
We previously selected two melanin-targeting radioligands [(125)I]ICF01035 and [(125)I]ICF01040 for melanoma-targeted (125)I radionuclide therapy according to their pharmacological profile in mice bearing B16F0 tumors. Here we demonstrate in vitro that these compounds present different radiotoxicities in relation to melanin and acidic vesicle contents in B16F0, B16F0 PTU and A375 cell lines. ICF01035 is effectively observed in nuclei of achromic (A375) melanoma or in melanosomes of melanized melanoma (B16F0), while ICF01040 stays in cytoplasmic vesicles in both cells. [(125)I]ICF01035 induced a similar survival fraction (A50) in all cell lines and led to a significant decrease in S-phase cells in amelanotic cell lines. [(125)I]ICF01040 induced a higher A50 in B16 cell lines compared to [(125)I]ICF01035 ones. [(125)I]ICF01040 induced a G2/M blockade in both A375 and B16F0 PTU, associated with its presence in cytoplasmic acidic vesicles. These results suggest that the radiotoxicity of [(125)I]ICF01035 and [(125)I]ICF01040 are not exclusively reliant on DNA alterations compatible with γ rays but likely result from local dose deposition (Auger electrons) leading to toxic compound leaks from acidic vesicles. In vivo, [(125)I]ICF01035 significantly reduced the number of B16F0 lung colonies, enabling a significant increase in survival of the treated mice. Targeting melanosomes or acidic vesicles is thus an option for future melanoma therapy.
Collapse
|
9
|
Rosenkranz AA, Slastnikova TA, Durymanov MO, Sobolev AS. Malignant melanoma and melanocortin 1 receptor. BIOCHEMISTRY. BIOKHIMIIA 2013; 78:1228-37. [PMID: 24460937 PMCID: PMC4064721 DOI: 10.1134/s0006297913110035] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The conventional chemotherapeutic treatment of malignant melanoma still remains poorly efficient in most cases. Thus the use of specific features of these tumors for development of new therapeutic modalities is highly needed. Melanocortin 1 receptor (MC1R) overexpression on the cell surface of the vast majority of human melanomas, making MC1R a valuable marker of these tumors, is one of these features. Naturally, MC1R plays a key role in skin protection against damaging ultraviolet radiation by regulating eumelanin production. MC1R activation is involved in regulation of melanocyte cell division. This article reviews the peculiarities of regulation and expression of MC1R, melanocytes, and melanoma cells, along with the possible connection of MC1R with signaling pathways regulating proliferation of tumor cells. MC1R is a cell surface endocytic receptor, thus considered perspective for diagnostics and targeted drug delivery. A number of new therapeutic approaches that utilize MC1R, including endoradiotherapy with Auger electron and α- and β-particle emitters, photodynamic therapy, and gene therapy are now being developed.
Collapse
Affiliation(s)
- A. A. Rosenkranz
- Institute of Gene Biology, Russian Academy of Sciences, ul. Vavilova 34/5, 199334 Moscow, Russia; fax: +7 (499) 135-4105
- Faculty of Biology, Lomonosov Moscow State University, Leninsky Gory 1-12, 119234 Moscow, Russia; fax: +7 (495) 939-4309;
- Targeted Delivery of Pharmaceuticals “Translek” LLC, ul. Vavilova 34/5, 199334 Moscow, Russia;
| | - T. A. Slastnikova
- Institute of Gene Biology, Russian Academy of Sciences, ul. Vavilova 34/5, 199334 Moscow, Russia; fax: +7 (499) 135-4105
| | - M. O. Durymanov
- Institute of Gene Biology, Russian Academy of Sciences, ul. Vavilova 34/5, 199334 Moscow, Russia; fax: +7 (499) 135-4105
- Faculty of Biology, Lomonosov Moscow State University, Leninsky Gory 1-12, 119234 Moscow, Russia; fax: +7 (495) 939-4309;
| | - A. S. Sobolev
- Institute of Gene Biology, Russian Academy of Sciences, ul. Vavilova 34/5, 199334 Moscow, Russia; fax: +7 (499) 135-4105
- Faculty of Biology, Lomonosov Moscow State University, Leninsky Gory 1-12, 119234 Moscow, Russia; fax: +7 (495) 939-4309;
- Targeted Delivery of Pharmaceuticals “Translek” LLC, ul. Vavilova 34/5, 199334 Moscow, Russia;
| |
Collapse
|
10
|
Morais M, Raposinho PD, Oliveira MC, Correia JDG, Santos I. Evaluation of novel 99mTc(I)-labeled homobivalent α-melanocyte-stimulating hormone analogs for melanocortin-1 receptor targeting. J Biol Inorg Chem 2012; 17:491-505. [PMID: 22286955 DOI: 10.1007/s00775-011-0871-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Accepted: 12/18/2011] [Indexed: 01/15/2023]
Abstract
Aiming to apply the multivalency concept to melanoma imaging, we have assessed the in vivo melanocortin type 1 receptor (MC1R)-targeting properties of (99m)Tc(I)-labeled homobivalent peptide conjugates which contain copies of the α-melanocyte-stimulating hormone (α-MSH) analog [Ac-Nle(4), Asp(5), D-Phe(7), Lys(11)]α-MSH4-11 separated by linkers of different length (L(2) nine atoms and L(3) 14 atoms). The MC1R-binding affinity of L(2) and L(3) is significantly higher than that of the monovalent conjugate L(1). Metallation of these conjugates yielded the complexes fac-[M(CO)(3)(k(3)-L)](+) (M is (99m)Tc/Re; 1/1a, L is L(1); 2/2a, L is L(2); 3/3a, L is L(3)), with IC(50) values in the subnanomolar and nanomolar range. The MC1R-mediated internalization of 2 and 3 is higher than that of 1 in B16F1 melanoma cells. Biodistribution studies in melanoma-bearing mice have shown low nonspecific accumulation with a tumor uptake that correlates with IC(50) values. However, no correlation between tumor uptake and valency was found. Nevertheless, 2 displayed the highest tumor retention, and the best tumor to nontarget organ ratios.
Collapse
Affiliation(s)
- Maurício Morais
- Unidade de Ciências Químicas e Radiofarmacêuticas, ITN, Estrada Nacional 10, 2686-953 Sacavém, Portugal
| | | | | | | | | |
Collapse
|