1
|
Iturbe-Rey S, Maccali C, Arrese M, Aspichueta P, Oliveira CP, Castro RE, Lapitz A, Izquierdo-Sanchez L, Bujanda L, Perugorria MJ, Banales JM, Rodrigues PM. Lipotoxicity-driven metabolic dysfunction-associated steatotic liver disease (MASLD). Atherosclerosis 2025; 400:119053. [PMID: 39581063 DOI: 10.1016/j.atherosclerosis.2024.119053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/19/2024] [Accepted: 11/08/2024] [Indexed: 11/26/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) encompasses a spectrum of liver lesions, ranging from simple steatosis to metabolic dysfunction-associated steatohepatitis (MASH), that may further progress to cirrhosis. MASLD is estimated to affect more than one third of the general population and it represents a risk factor for end-stage liver failure and liver cancer, substantially contributing to liver-related morbidity and mortality. Although the pathogenesis of MASLD is incompletely understood, it is known to consist of a multifactorial process influenced by extrinsic and intrinsic factors such as metabolic, environmental and demographic features, gut microbiota and genetics. Dysregulation of both extracellular and intracellular lipid composition is known to promote the generation of toxic lipid species, thereby triggering lipotoxicity and cellular stress. These events ultimately lead to the activation of distinct cell death pathways, resulting in inflammation, fibrogenesis and, eventually, carcinogenesis. In this manuscript, we provide a comprehensive review of the role of lipotoxicity during MASLD pathogenesis, discussing the most relevant lipid species and related molecular mechanisms, summarizing the cell type-specific effects and highlighting the most promising putative therapeutic strategies for modulating lipotoxicity and lipid metabolism in MASLD.
Collapse
Affiliation(s)
- Santiago Iturbe-Rey
- Department of Liver and Gastrointestinal Diseases, Biogipuzkoa Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), Donostia-San Sebastian, Spain
| | - Claudia Maccali
- Clinical and Experimental Gastroenterology Laboratory LIM-07, Department of Gastroenterology, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Marco Arrese
- Department of Gastroenterology, Faculty of Medicine, Pontificia Universidad Católica de Chile Santiago, 8330077, Chile
| | - Patricia Aspichueta
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940, Leioa, Spain; Biobizkaia Health Research Institute, Cruces University Hospital, 48903, Barakaldo, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), Spain
| | - Claudia P Oliveira
- Clinical and Experimental Gastroenterology Laboratory LIM-07, Department of Gastroenterology, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil; Division of Clinical Gastroenterology and Hepatology, Hospital das Clínicas de São Paulo, HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Rui E Castro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Ainhoa Lapitz
- Department of Liver and Gastrointestinal Diseases, Biogipuzkoa Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), Donostia-San Sebastian, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), Spain
| | - Laura Izquierdo-Sanchez
- Department of Liver and Gastrointestinal Diseases, Biogipuzkoa Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), Donostia-San Sebastian, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), Spain
| | - Luis Bujanda
- Department of Liver and Gastrointestinal Diseases, Biogipuzkoa Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), Donostia-San Sebastian, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), Spain
| | - Maria J Perugorria
- Department of Liver and Gastrointestinal Diseases, Biogipuzkoa Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), Donostia-San Sebastian, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), Spain; Department of Medicine, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940, Leioa, Spain
| | - Jesus M Banales
- Department of Liver and Gastrointestinal Diseases, Biogipuzkoa Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), Donostia-San Sebastian, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain; Department of Biochemistry and Genetics, School of Sciences, University of Navarra, Pamplona, Spain.
| | - Pedro M Rodrigues
- Department of Liver and Gastrointestinal Diseases, Biogipuzkoa Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), Donostia-San Sebastian, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
2
|
Karmelić I, Jurilj Sajko M, Sajko T, Rotim K, Fabris D. The role of sphingolipid rheostat in the adult-type diffuse glioma pathogenesis. Front Cell Dev Biol 2024; 12:1466141. [PMID: 39723240 PMCID: PMC11668798 DOI: 10.3389/fcell.2024.1466141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 11/11/2024] [Indexed: 12/28/2024] Open
Abstract
Gliomas are highly aggressive primary brain tumors, with glioblastoma multiforme being the most severe and the most common one. Aberrations in sphingolipid metabolism are a hallmark of glioma cells. The sphingolipid rheostat represents the balance between the pro-apoptotic ceramide and pro-survival sphingosine-1-phosphate (S1P), and in gliomas it is shifted toward cell survival and proliferation, promoting gliomas' aggressiveness, cellular migration, metastasis, and invasiveness. The sphingolipid rheostat can be altered by targeting enzymes that directly or indirectly affect the ratio of ceramide to S1P, leading to increased ceramide or decreased S1P levels. Targeting the sphingolipid rheostat offers a potential therapeutic pathway for glioma treatment which can be considered through reducing S1P levels or modulating S1P receptors to reduce cell proliferation, as well as through increasing ceramide levels to induce apoptosis in glioma cells. Although the practical translation into clinical therapy is still missing, sphingolipid rheostat targeting in gliomas has been of great research interest in recent years with several interesting achievements in the glioma therapy approach, offering hope for patients suffering from these vicious malignancies.
Collapse
Affiliation(s)
- Ivana Karmelić
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Mia Jurilj Sajko
- Department of Neurosurgery, University Hospital Center “Sestre milosrdnice”, Zagreb, Croatia
| | - Tomislav Sajko
- Department of Neurosurgery, University Hospital Center “Sestre milosrdnice”, Zagreb, Croatia
| | - Krešimir Rotim
- Department of Neurosurgery, University Hospital Center “Sestre milosrdnice”, Zagreb, Croatia
| | - Dragana Fabris
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, School of Medicine, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
3
|
Zhang Z, Boggavarapu NR, Muhr LSA, Garcia-Serrango A, Aeppli TRJ, Nava TS, Zhao Y, Gutierrez-Farewik EM, Kulachenko A, Sävendahl L, Zaman F. Genomic Effects of Biomechanical Loading in Adolescent Human Growth Plate Cartilage: A Pilot Study. Cartilage 2024:19476035241302954. [PMID: 39655393 PMCID: PMC11629350 DOI: 10.1177/19476035241302954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 11/04/2024] [Accepted: 11/10/2024] [Indexed: 12/12/2024] Open
Abstract
OBJECTIVE The genomic effects of biomechanical loading on human growth plate cartilage are unknown so far. To address this, we used rare human growth plate biopsies obtained from children undergoing epiphysiodesis and exposed them to precisely controlled mechanical loading using a microloading device. The biopsies were cultured 24 hours after mechanical loading, followed by RNA-sequencing analyses to decipher the genomic regulation. DESIGN We conducted RNA-seq analysis of human growth plate cartilage obtained from three patients cultured ex vivo and subjected to cyclical mechanical loading with peak 0.4 N with frequency 0.77 Hz during a 30-second duration, using a specialized microloading device. RESULTS Gene ontology analysis revealed novel data showing three significantly upregulated signaling pathways, including notch, oxytocin, and tight junction, and three significantly downregulated signaling pathways, including lysosome, sphingolipid metabolism, and peroxisome proliferator-activated receptor (PPAR) in human growth plate cartilage. Moreover, we found 15 significantly regulated genes within these signaling pathways from all three patients. These genes included PSEN2, HEY1, and NCOR2 from the notch signaling; CACNB1 and PPP3R2 from the oxytocin signaling; ACTR3C, WHAMM, and ARHGEF18 from the tight junction signaling; ARSA, SMPD1, and CD68 from the lysosome signaling; ARSA and SMPD1 from the sphingolipid metabolism signaling; and SLC27A4 and AQP7 from the PPAR signaling pathway. In addition, 20 significantly upregulated genes and six significantly downregulated genes shared between two patient samples were identified. CONCLUSION Our study provides the first-ever transcriptomic data of mechanical loading of human growth plate cartilage. These findings can potentially provide genetic targets for future investigations in physiological and pathological bone growth conditions.
Collapse
Affiliation(s)
- Zhengpei Zhang
- Division of Paediatric Endocrinology, Department of Women’s and Children’s Health, Karolinska Institutet, Solna, Sweden
| | - Nageswara Rao Boggavarapu
- Division of Obstetrics and Gynaecology, Department of Women’s and Children’s Health, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Laila Sara Arroyo Muhr
- Center for Cervical Cancer Elimination, Department of Clinical Science, Intervention and Technology, Karolinska University Hospital, Stockholm, Sweden
| | - Ainhoa Garcia-Serrango
- Center for Cervical Cancer Elimination, Department of Clinical Science, Intervention and Technology, Karolinska University Hospital, Stockholm, Sweden
| | - Tim RJ Aeppli
- Division of Paediatric Endocrinology, Department of Women’s and Children’s Health, Karolinska Institutet, Solna, Sweden
| | - Tobia Sebastiano Nava
- KTH MoveAbility Lab, Department of Engineering Mechanics, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Yunhan Zhao
- Division of Paediatric Endocrinology, Department of Women’s and Children’s Health, Karolinska Institutet, Solna, Sweden
| | - Elena M. Gutierrez-Farewik
- KTH MoveAbility Lab, Department of Engineering Mechanics, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Artem Kulachenko
- Material and Structural Mechanics, Department of Engineering Mechanics, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Lars Sävendahl
- Division of Paediatric Endocrinology, Department of Women’s and Children’s Health, Karolinska Institutet, Solna, Sweden
| | - Farasat Zaman
- Division of Paediatric Endocrinology, Department of Women’s and Children’s Health, Karolinska Institutet, Solna, Sweden
| |
Collapse
|
4
|
Wang S, Jin Z, Wu B, Morris AJ, Deng P. Role of dietary and nutritional interventions in ceramide-associated diseases. J Lipid Res 2024; 66:100726. [PMID: 39667580 DOI: 10.1016/j.jlr.2024.100726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/28/2024] [Accepted: 12/02/2024] [Indexed: 12/14/2024] Open
Abstract
Ceramides are important intermediates in sphingolipid metabolism and serve as signaling molecules with independent biological significance. Elevated cellular and circulating ceramide levels are consistently associated with pathological conditions including cardiometabolic diseases, neurological diseases, autoimmune diseases, and cancers. Although pharmacological inhibition of ceramide formation often protects against these diseases in animal models, pharmacological modulation of ceramides in humans remains impractical. Dietary interventions including the Mediterranean diet, lacto-ovo-vegetarian diet, calorie-restricted diet, restriction of dairy product consumption, and dietary supplementation with polyunsaturated fatty acids, dietary fibers, and polyphenols, all have beneficial effects on modulating ceramide levels. Mechanistic insights into these interventions are discussed. This article reviews the relationships between ceramides and disease pathogenesis, with a focus on dietary intervention as a viable strategy for lowering the concentration of circulating ceramides.
Collapse
Affiliation(s)
- Shengnan Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Zihui Jin
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Biyu Wu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Andrew J Morris
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences and Central Arkansas Veterans Affairs Healthcare System, Little Rock, Arkansas, USA
| | - Pan Deng
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
5
|
Gharagozlou S, Wright NM, Murguia-Favela L, Eshleman J, Midgley J, Saygili S, Mathew G, Lesmana H, Makkoukdji N, Gans M, Saba JD. Sphingosine phosphate lyase insufficiency syndrome as a primary immunodeficiency state. Adv Biol Regul 2024; 94:101058. [PMID: 39454238 DOI: 10.1016/j.jbior.2024.101058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/17/2024] [Accepted: 10/21/2024] [Indexed: 10/28/2024]
Abstract
Sphingosine phosphate lyase insufficiency syndrome (SPLIS) is a genetic disease associated with renal, endocrine, neurological, skin and immune defects. SPLIS is caused by inactivating mutations in SGPL1, which encodes sphingosine phosphate lyase (SPL). SPL catalyzes the irreversible degradation of the bioactive sphingolipid sphingosine-1-phosphate (S1P), a key regulator of lymphocyte egress. The SPL reaction represents the only exit point of sphingolipid metabolism, and SPL insufficiency causes widespread sphingolipid derangements that could additionally contribute to immunodeficiency. Herein, we review SPLIS, the sphingolipid metabolic pathway, and various roles sphingolipids play in immunity. We then explore SPLIS-related immunodeficiency by analyzing data available in the published literature supplemented by medical record reviews in ten SPLIS children. We found 93% of evaluable SPLIS patients had documented evidence of immunodeficiency. Many of the remainder of cases were unevaluable due to lack of available immunological data. Most commonly, SPLIS patients exhibited lymphopenia and T cell-specific lymphopenia, consistent with the established role of the S1P/S1P1/SPL axis in lymphocyte egress. However, low B and NK cell counts, hypogammaglobulinemia, and opportunistic infections with bacterial, viral and fungal pathogens were observed. Diminished responses to childhood vaccinations were less frequently observed. Screening blood tests quantifying recent thymic emigrants identified some lymphopenic SPLIS patients in the newborn period. Lymphopenia has been reported to improve after cofactor supplementation in some SPLIS patients, indicating upregulation of SPL activity. A variety of treatments including immunoglobulin replacement, prophylactic antimicrobials and special preparation of blood products prior to transfusion have been employed in SPLIS. The diverse immune consequences in SPLIS patients suggest that aberrant S1P signaling may not fully explain the extent of immunodeficiency. Further study will be required to fully elucidate the complex mechanisms underlying SPLIS immunodeficiency and determine the most effective prophylaxis against infection.
Collapse
Affiliation(s)
- Saber Gharagozlou
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA.
| | - NicolaA M Wright
- Department of Pediatrics, Cummings School of Medicine, University of Calgary, Alberta, Canada.
| | - Luis Murguia-Favela
- Department of Pediatrics, Cummings School of Medicine, University of Calgary, Alberta, Canada.
| | - Juliette Eshleman
- Department of Pediatrics, Cummings School of Medicine, University of Calgary, Alberta, Canada.
| | - Julian Midgley
- Department of Pediatrics, Cummings School of Medicine, University of Calgary, Alberta, Canada.
| | - Seha Saygili
- Department of Pediatric Nephrology, Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Istanbul, Turkey.
| | - Georgie Mathew
- Division of Pediatric Nephrology, Christian Medical College, Vellore, India.
| | - Harry Lesmana
- Department of Medical Genetics and Genomics, Department of Pediatric Hematology/Oncology and BMT, Cleveland Clinic, Cleveland, OH, USA.
| | - Nadia Makkoukdji
- Department of Pediatrics, Division of Allergy & Immunology University of Miami Miller School of Medicine/Jackson Memorial Hospital, Miami, FL, USA.
| | - Melissa Gans
- Department of Pediatrics, Division of Allergy & Immunology University of Miami Miller School of Medicine/Jackson Memorial Hospital, Miami, FL, USA.
| | - Julie D Saba
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
6
|
Nyam TTE, Wee HY, Chiu MH, Tu KC, Wang CC, Yeh YT, Kuo CL. Hyperbaric Oxygen Therapy Reduces the Traumatic Brain Injury-Mediated Neuroinflammation Through Enrichment of Prevotella Copri in the Gut of Male Rats. Neurocrit Care 2024; 41:798-812. [PMID: 38750394 PMCID: PMC11599330 DOI: 10.1007/s12028-024-01997-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 04/10/2024] [Indexed: 11/28/2024]
Abstract
BACKGROUND Gastrointestinal dysfunction frequently occurs following traumatic brain injury (TBI) and significantly increases posttraumatic complications. TBI can lead to alterations in gut microbiota. The neuroprotective effects of hyperbaric oxygen (HBO) have not been well recognized after TBI. The study''s aim was to investigate the impact of HBO on TBI-induced dysbiosis in the gut and the pathological changes in the brain following TBI. METHODS Anesthetized male Sprague-Dawley rats were randomly assigned to three groups: sham surgery plus normobaric air (21% oxygen at 1 atmospheres absolute), TBI (2.0 atm) plus normobaric air, and TBI (2.0 atm) plus HBO (100% oxygen at 2.0 atmospheres absolute) for 60 min immediately after TBI, 24 h later, and 48 h later. The brain injury volume, tumor necrosis factor-α expression in microglia and astrocytes, and neuronal apoptosis in the brain were subsequently determined. The V3-V4 regions of 16S ribosomal rRNA in the fecal samples were sequenced, and alterations in the gut microbiome were statistically analyzed. All parameters were evaluated on the 3rd day after TBI. RESULTS Our results demonstrated that HBO improved TBI-induced neuroinflammation, brain injury volume, and neuronal apoptosis. HBO appeared to increase the abundance of aerobic bacteria while inhibiting anaerobic bacteria. Intriguingly, HBO reversed the TBI-mediated decrease in Prevotella copri and Deinococcus spp., both of which were negatively correlated with neuroinflammation and brain injury volume. TBI increased the abundance of these gut bacteria in relation to NOD-lik0065 receptor signaling and the proteasome pathway, which also exhibited a positive correlation trend with neuro inflammation and apoptosis. The abundance of Prevotella copri was negatively correlated with NOD-like receptor signaling and the Proteasome pathway. CONCLUSIONS Our study demonstrated how the neuroprotective effects of HBO after acute TBI might act through reshaping the TBI-induced gut dysbiosis and reversing the TBI-mediated decrease of Prevotella copri.
Collapse
Affiliation(s)
- Tee-Tau Eric Nyam
- Department of Neurosurgery, Chi Mei Medical Center, 901 Chung Hwa Road, Yung Kang Dist., Tainan, 71004, Taiwan
- Center of General Education, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Hsiao-Yue Wee
- Department of Neurosurgery, Chi Mei Medical Center, Liouying, Tainan, Taiwan
| | - Min-Hsi Chiu
- Aging and Disease Prevention Research Center, Fooyin University, Kaohsiung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Fooyin University, Kaohsiung, Taiwan
| | - Kuan-Chi Tu
- Department of Neurosurgery, Chi Mei Medical Center, 901 Chung Hwa Road, Yung Kang Dist., Tainan, 71004, Taiwan
| | - Che-Chuan Wang
- Department of Neurosurgery, Chi Mei Medical Center, 901 Chung Hwa Road, Yung Kang Dist., Tainan, 71004, Taiwan
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan
| | - Yao-Tsung Yeh
- Aging and Disease Prevention Research Center, Fooyin University, Kaohsiung, Taiwan.
- Department of Medical Laboratory Science and Biotechnology, Fooyin University, Kaohsiung, Taiwan.
| | - Ching-Lung Kuo
- Department of Neurosurgery, Chi Mei Medical Center, 901 Chung Hwa Road, Yung Kang Dist., Tainan, 71004, Taiwan.
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan.
- School of Medicine, Colledge of Medicine, National Sun Yat-Sen University, Kaohsiung, Taiwan.
| |
Collapse
|
7
|
Xu Z, He S, Begum MM, Han X. Myelin Lipid Alterations in Neurodegenerative Diseases: Landscape and Pathogenic Implications. Antioxid Redox Signal 2024; 41:1073-1099. [PMID: 39575748 DOI: 10.1089/ars.2024.0676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Significance: Lipids, which constitute the highest portion (over 50%) of brain dry mass, are crucial for brain integrity, energy homeostasis, and signaling regulation. Emerging evidence revealed that lipid profile alterations and abnormal lipid metabolism occur during normal aging and in different forms of neurodegenerative diseases. Moreover, increasing genome-wide association studies have validated new targets on lipid-associated pathways involved in disease development. Myelin, the protective sheath surrounding axons, is crucial for efficient neural signaling transduction. As the primary site enriched with lipids, impairments of myelin are increasingly recognized as playing significant and complex roles in various neurodegenerative diseases, beyond simply being secondary effects of neuronal loss. Recent Advances: With advances in the lipidomics field, myelin lipid alterations and their roles in contributing to or reflecting the progression of diseases, including Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, multiple sclerosis, and others, have recently caught great attention. Critical Issues: This review summarizes recent findings of myelin lipid alterations in the five most common neurodegenerative diseases and discusses their implications in disease pathogenesis. Future Directions: By highlighting myelin lipid abnormalities in neurodegenerative diseases, this review aims to encourage further research focused on lipids and the development of new lipid-oriented therapeutic approaches in this area. Antioxid. Redox Signal. 00, 000-000.
Collapse
Affiliation(s)
- Ziying Xu
- Sam and Ann Barshop Institute for Longevity and Aging Studies, UT Health San Antonio, San Antonio, Texas, USA
| | - Sijia He
- Sam and Ann Barshop Institute for Longevity and Aging Studies, UT Health San Antonio, San Antonio, Texas, USA
| | - Mst Marium Begum
- Sam and Ann Barshop Institute for Longevity and Aging Studies, UT Health San Antonio, San Antonio, Texas, USA
| | - Xianlin Han
- Sam and Ann Barshop Institute for Longevity and Aging Studies, UT Health San Antonio, San Antonio, Texas, USA
- Department of Medicine, UT Health San Antonio, San Antonio, Texas, USA
| |
Collapse
|
8
|
Jang Y, Kim CY. The Role of Vitamin E Isoforms and Metabolites in Cancer Prevention: Mechanistic Insights into Sphingolipid Metabolism Modulation. Nutrients 2024; 16:4115. [PMID: 39683509 DOI: 10.3390/nu16234115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/27/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
Natural forms of vitamin E include four tocopherols and four tocotrienols (α, β, γ, and δ), which are essential as lipophilic antioxidants. Among these eight isoforms, α-tocopherol (αT), the predominant form of vitamin E found in tissues, has traditionally received the most attention in disease prevention research due to its robust antioxidant activity. However, recent studies suggest that other forms of vitamin E exhibit distinct and potentially more potent beneficial activities in disease prevention and treatment. These non-αT forms of vitamin E are metabolized in vivo, producing various metabolites, including 13'-carboxychromanol, though their biological roles remain largely unknown. Notably, sphingolipids, known for their significant roles in cancer biology, may be involved in the anticancer effects of vitamin E through the modulation of sphingolipid metabolism. This review focuses on the diverse biological activities of different vitamin E forms and their metabolites, particularly their anticancer effects, while highlighting the underlying mechanisms, including their novel impact on regulating sphingolipid pathways. By elucidating these interactions, we aim to provide a deeper understanding on the multifaceted roles of vitamin E in cancer prevention and therapy.
Collapse
Affiliation(s)
- Yumi Jang
- Department of Food Science and Nutrition, University of Ulsan, Ulsan 44610, Republic of Korea
- Basic-Clinical Convergence Research Institute, University of Ulsan, Ulsan 44610, Republic of Korea
| | - Choon Young Kim
- Department of Food and Nutrition, Yeungnam University, Gyeongsan 38541, Republic of Korea
- Research Institute of Human Ecology, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
9
|
Jang IS, Lee SJ, Bahn YS, Baek SH, Yu BJ. Engineering of Saccharomyces cerevisiae as a platform strain for microbial production of sphingosine-1-phosphate. Microb Cell Fact 2024; 23:310. [PMID: 39550572 PMCID: PMC11569612 DOI: 10.1186/s12934-024-02579-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 11/04/2024] [Indexed: 11/18/2024] Open
Abstract
BACKGROUND Sphingosine-1-phosphate (S1P) is a multifunctional sphingolipid that has been implicated in regulating cellular activities in mammalian cells. Due to its therapeutic potential, there is a growing interest in developing efficient methods for S1P production. To date, the production of S1P has been achieved through chemical synthesis or blood extraction, but these processes have limitations such as complexity and cost. In this study, we generated an S1P-producing Saccharomyces cerevisiae strain by using metabolic engineering and introducing a heterologous sphingolipid biosynthetic pathway to demonstrate the possibility of microbial S1P production. RESULTS To construct the sphingosine-producing S. cerevisiae strain, both the sphingolipid delta 4 desaturase gene (DES1) and the alkaline ceramidase gene (ACER1) derived from Homo sapiens were introduced into the genome of S. cerevisiae by deleting the dihydrosphingosine phosphate lyase gene (DPL1) and the sphingoid long-chain base kinase gene (LCB5) to prevent S1P degradation and byproduct formation, respectively. The sphingosine-producing strain, DDLA, produced sphingolipids containing sphingosine. In flask fed-batch fermentation, the DDLA strain showed a higher production level of sphingosine under aerobic conditions with high initial cell density. The S1P-producing strain was generated by expressing the human sphingosine kinase gene (SPHK1) under the control of the inducible promoter, while deleting the ORM1 gene involved in the regulation of sphingolipid biosynthesis. The S1P-producing strain, DDLAOgS, exhibited the highest sphingosine production level under fed-batch fermentation in a bioreactor, achieving a 2.6-fold increase compared to flask fermentation. S1P biosynthesis in the DDLAOgS strain was verified by qualitative analysis using electrospray ionization mass spectrometry (ESI-MS). CONCLUSIONS We successfully developed a metabolically engineered S. cerevisiae as a platform strain for microbial production of S1P by introducing an exogenous pathway of sphingolipids metabolism. The engineered yeast strains showed significant capabilities for sphingolipid production, including S1P. To our knowledge, this is the first report demonstrating that engineered S. cerevisiae can be a major platform strain for producing microbial S1P.
Collapse
Affiliation(s)
- In-Seung Jang
- Low-Carbon Transition R&D Department, Korea Institute of Industrial Technology (KITECH), Research Institute of Sustainable Development Technology, Cheonan, 31056, Republic of Korea
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Sung Jin Lee
- Low-Carbon Transition R&D Department, Korea Institute of Industrial Technology (KITECH), Research Institute of Sustainable Development Technology, Cheonan, 31056, Republic of Korea
| | - Yong-Sun Bahn
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea.
| | - Seung-Ho Baek
- Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44429, Republic of Korea.
| | - Byung Jo Yu
- Low-Carbon Transition R&D Department, Korea Institute of Industrial Technology (KITECH), Research Institute of Sustainable Development Technology, Cheonan, 31056, Republic of Korea.
| |
Collapse
|
10
|
Ustjanzew A, Nedwed AS, Sandhoff R, Faber J, Marini F, Paret C. Unraveling the glycosphingolipid metabolism by leveraging transcriptome-weighted network analysis on neuroblastic tumors. Cancer Metab 2024; 12:29. [PMID: 39449099 PMCID: PMC11515559 DOI: 10.1186/s40170-024-00358-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 10/11/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Glycosphingolipids (GSLs) are membrane lipids composed of a ceramide backbone linked to a glycan moiety. Ganglioside biosynthesis is a part of the GSL metabolism, which involves sequential reactions catalyzed by specific enzymes that in part have a poor substrate specificity. GSLs are deregulated in cancer, thus playing a role as potential biomarkers for personalized therapy or subtype classification. However, the analysis of GSL profiles is complex and requires dedicated technologies, that are currently not included in the commonly utilized high-throughput assays adopted in contexts such as molecular tumor boards. METHODS In this study, we developed a method to discriminate the enzyme activity among the four series of the ganglioside metabolism pathway by incorporating transcriptome data and topological information of the metabolic network. We introduced three adjustment options for reaction activity scores (RAS) and demonstrated their application in both exploratory and comparative analyses by applying the method on neuroblastic tumors (NTs), encompassing neuroblastoma (NB), ganglioneuroblastoma (GNB), and ganglioneuroma (GN). Furthermore, we interpreted the results in the context of earlier published GSL measurements in the same tumors. RESULTS By adjusting RAS values using a weighting scheme based on network topology and transition probabilities (TPs), the individual series of ganglioside metabolism can be differentiated, enabling a refined analysis of the GSL profile in NT entities. Notably, the adjustment method we propose reveals the differential engagement of the ganglioside series between NB and GNB. Moreover, MYCN gene expression, a well-known prognostic marker in NTs, appears to correlate with the expression of therapeutically relevant gangliosides, such as GD2. Using unsupervised learning, we identified subclusters within NB based on altered GSL metabolism. CONCLUSION Our study demonstrates the utility of adjusting RAS values in discriminating ganglioside metabolism subtypes, highlighting the potential for identifying novel cancer subgroups based on sphingolipid profiles. These findings contribute to a better understanding of ganglioside dysregulation in NT and may have implications for stratification and targeted therapeutic strategies in these tumors and other tumor entities with a deregulated GSL metabolism.
Collapse
Affiliation(s)
- Arsenij Ustjanzew
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, 55131, Germany.
| | - Annekathrin Silvia Nedwed
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, 55131, Germany
| | - Roger Sandhoff
- Lipid Pathobiochemistry, German Cancer Research Center, Heidelberg, 69120, Germany
| | - Jörg Faber
- Department of Pediatric Hematology/Oncology, Center for Pediatric and Adolescent Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, 55131, Germany
- University Cancer Center (UCT), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, 55131, Germany
| | - Federico Marini
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, 55131, Germany
- Research Center for Immunotherapy (FZI), Mainz, 55131, Germany
| | - Claudia Paret
- Department of Pediatric Hematology/Oncology, Center for Pediatric and Adolescent Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, 55131, Germany
- University Cancer Center (UCT), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, 55131, Germany
- Research Center for Immunotherapy (FZI), Mainz, 55131, Germany
| |
Collapse
|
11
|
Yang J, Bernard L, Wong KE, Yu B, Steffen LM, Sullivan VK, Rebholz CM. Serum metabolite signature of the modified Mediterranean-DASH intervention for neurodegenerative delay (MIND) diet. Metabolomics 2024; 20:118. [PMID: 39432124 DOI: 10.1007/s11306-024-02184-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/10/2024] [Indexed: 10/22/2024]
Abstract
INTRODUCTION There is a lack of biomarkers of clinically important diets, such as the Mediterranean-DASH Intervention for Neurodegenerative Delay (MIND) diet. OBJECTIVES Our study explored serum metabolites associated with adherence to the MIND diet. METHODS In 3,908 Atherosclerosis Risk in Communities (ARIC) study participants, we calculated a modified MIND diet score based on a 66-item self-reported food frequency questionnaire (FFQ). The modified score did not include berries and olive oil, as these items were not assessed in the FFQ. We used multivariable linear regression models in 2 subgroups of ARIC study participants and meta-analyzed results using fixed effects regression to identify significant metabolites after Bonferroni correction. We also examined associations between these metabolites and food components of the modified MIND diet. C-statistics evaluated the prediction of high modified MIND diet adherence using significant metabolites beyond participant characteristics. RESULTS Of 360 metabolites analyzed, 27 metabolites (15 positive, 12 negative) were significantly associated with the modified MIND diet score (lipids, n = 13; amino acids, n = 5; xenobiotics, n = 3; cofactors and vitamins, n = 3; carbohydrates n = 2; nucleotide n = 1). The top 4 metabolites that improved the prediction of high dietary adherence to the modified MIND diet were 7-methylxanthine, theobromine, docosahexaenoate (DHA), and 3-carboxy-4-methyl-5-propyl-2-furanpropanoate (CMPF). CONCLUSION Twenty-seven metabolomic markers were correlated with the modified MIND diet. The biomarkers, if further validated, could be useful to objectively assess adherence to the MIND diet.
Collapse
Affiliation(s)
- Jiaqi Yang
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University, Baltimore, MD, USA
| | - Lauren Bernard
- Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University, Baltimore, MD, USA
- School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Kari E Wong
- Metabolon, Research Triangle Park, Morrisville, NC, USA
| | - Bing Yu
- Department of Epidemiology, University of Texas Health Science Center at Houston School of Public Health, Houston, TX, USA
| | - Lyn M Steffen
- Division of Epidemiology and Community Health, University of Minnesota School of Public Health, Minneapolis, MN, USA
| | - Valerie K Sullivan
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University, Baltimore, MD, USA
| | - Casey M Rebholz
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
- Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
12
|
Frankevich N, Chagovets V, Tokareva A, Starodubtseva N, Limonova E, Sukhikh G, Frankevich V. Dietary Regulation of Lipid Metabolism in Gestational Diabetes Mellitus: Implications for Fetal Macrosomia. Int J Mol Sci 2024; 25:11248. [PMID: 39457029 PMCID: PMC11508696 DOI: 10.3390/ijms252011248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/10/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
The primary therapeutic approach for managing hyperglycemia today is diet therapy. Lipids are not only a source of nutrients but also play a role in initiating adipocyte differentiation in the fetus, which may explain the development of fetal macrosomia and future metabolic disorders in children born to mothers with gestational diabetes mellitus (GDM). Alterations in the maternal blood lipid profile, influenced by adherence to a healthy diet in mothers with GDM and the occurrence of fetal macrosomia, represent a complex and not fully understood process. The aim of this study was to examine the characteristics of the blood plasma lipid profile in pregnant women with GDM across all trimesters based on adherence to diet therapy. The clinical part of the study followed a case-control design, including 110 women: 80 in the control group, 20 in a GDM group adhering to the diet, and 10 in a GDM group not adhering to the diet. The laboratory part was conducted as a longitudinal dynamic study, with venous blood samples collected at three time points: 11-13, 24-26, and 30-32 weeks of pregnancy. A significant impact of diet therapy on the composition of blood lipids throughout pregnancy was demonstrated, starting as early as the first trimester. ROC analysis indicated high effectiveness of the models developed, with an AUC of 0.98 for the 30- to 32-week model and sensitivity and specificity values of 1 and 0.9, respectively. An association was found between dietary habits, maternal blood lipid composition at 32 weeks, and newborn weight. The changes in lipid profiles during macrosomia development and under diet therapy were found to be diametrically opposed, confirming at the molecular level that diet therapy can normalize not only carbohydrate metabolism but also lipid metabolism in both the mother and fetus. Based on the data obtained, it is suggested that after further validation, the developed models could be used to improve the prognosis of macrosomia by analyzing blood plasma lipid profiles at various stages of pregnancy.
Collapse
Affiliation(s)
- Natalia Frankevich
- V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of Russian, 117997 Moscow, Russia; (V.C.); (A.T.); (N.S.); (E.L.); (G.S.); (V.F.)
| | - Vitaliy Chagovets
- V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of Russian, 117997 Moscow, Russia; (V.C.); (A.T.); (N.S.); (E.L.); (G.S.); (V.F.)
| | - Alisa Tokareva
- V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of Russian, 117997 Moscow, Russia; (V.C.); (A.T.); (N.S.); (E.L.); (G.S.); (V.F.)
| | - Natalia Starodubtseva
- V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of Russian, 117997 Moscow, Russia; (V.C.); (A.T.); (N.S.); (E.L.); (G.S.); (V.F.)
- Moscow Center for Advanced Studies, 123592 Moscow, Russia
| | - Elizaveta Limonova
- V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of Russian, 117997 Moscow, Russia; (V.C.); (A.T.); (N.S.); (E.L.); (G.S.); (V.F.)
| | - Gennady Sukhikh
- V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of Russian, 117997 Moscow, Russia; (V.C.); (A.T.); (N.S.); (E.L.); (G.S.); (V.F.)
- Department of Obstetrics, Gynecology, Perinatology and Reproductology, Institute of Professional Education, Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 119991 Moscow, Russia
| | - Vladimir Frankevich
- V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of Russian, 117997 Moscow, Russia; (V.C.); (A.T.); (N.S.); (E.L.); (G.S.); (V.F.)
- Laboratory of Translational Medicine, Siberian State Medical University, 634050 Tomsk, Russia
| |
Collapse
|
13
|
Mohamud Yusuf A, Zhang X, Gulbins E, Peng Y, Hagemann N, Hermann DM. Signaling roles of sphingolipids in the ischemic brain and their potential utility as therapeutic targets. Neurobiol Dis 2024; 201:106682. [PMID: 39332507 DOI: 10.1016/j.nbd.2024.106682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/24/2024] [Accepted: 09/24/2024] [Indexed: 09/29/2024] Open
Abstract
Sphingolipids comprise a class of lipids, which are composed of a sphingoid base backbone and are essential structural components of cell membranes. Beyond their role in maintaining cellular integrity, several sphingolipids are pivotally involved in signaling pathways controlling cell proliferation, differentiation, and death. The brain exhibits a particularly high concentration of sphingolipids and dysregulation of the sphingolipid metabolism due to ischemic injury is implicated in consecutive pathological events. Experimental stroke studies revealed that the stress sphingolipid ceramide accumulates in the ischemic brain post-stroke. Specifically, counteracting ceramide accumulation protects against ischemic damage and promotes brain remodeling, which translates into improved behavioral outcome. Sphingomyelin substantially influences cell membrane fluidity and thereby controls the release of extracellular vesicles, which are important vehicles in cellular communication. By modulating sphingomyelin content, these vesicles were shown to contribute to behavioral recovery in experimental stroke studies. Another important sphingolipid that influences stroke pathology is sphingosine-1-phosphate, which has been attributed a pro-angiogenic function, that is presumably mediated by its effect on endothelial function and/or immune cell trafficking. In experimental and clinical studies, sphingosine-1-phosphate receptor modulators allowed to modify clinically significant stroke recovery. Due to their pivotal roles in cell signaling, pharmacological compounds modulating sphingolipids, their enzymes or receptors hold promise as therapeutics in human stroke patients.
Collapse
Affiliation(s)
| | - Xiaoni Zhang
- Department of Neurology, University Hospital Essen, Essen, Germany; Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Erich Gulbins
- Institute of Molecular Biology, University Hospital Essen, Essen, Germany
| | - Ying Peng
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Nina Hagemann
- Department of Neurology, University Hospital Essen, Essen, Germany
| | - Dirk M Hermann
- Department of Neurology, University Hospital Essen, Essen, Germany.
| |
Collapse
|
14
|
Duan DM, Wang YC, Hu X, Wang YB, Wang YQ, Hu Y, Zhou XJ, Dong XZ. Effects of regulating gut microbiota by electroacupuncture in the chronic unpredictable mild stress rat model. Neuroscience 2024; 557:24-36. [PMID: 39128700 DOI: 10.1016/j.neuroscience.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/04/2024] [Accepted: 08/06/2024] [Indexed: 08/13/2024]
Abstract
OBJECTIVE This study aims to investigate the effect of electroacupuncture (EA) treatment on depression, and the potential molecular mechanism of EA in depression-like behaviors rats. METHODS A total of 40 male Sprague Dawley rats were divided into three groups: normal control, chronic unpredictable mild stress (CUMS), and EA (CUMS + EA). The rats in CUMS and EA groups underwent chronic stress for 10 weeks, and EA group rats received EA treatment for 4 weeks starting from week 7. Body weight and behavioral tests, including the sucrose preference test (SPT), the forced swimming test (FST), and the open field test (OFT) were monitored. Gut microbiota composition was assessed via 16S rDNA sequencing, and lipid metabolism was analyzed by using UPLC-Q-TOF/MS technology. RESULTS In comparison to CUMS group, EA could improve the behavior including bodyweight, immovability time, sucrose preference index, crossing piece index and rearing times index. After 4 weeks of EA treatment, 5-HT in hippocampus, serum and colon of depressive rats were simultaneously increased, indicating a potential alleviation of depression-like behaviors. In future studies revealed that EA could regulate the distribution and functions of gut microbiota, and improve the intestinal barrier function of CUMS rats. The regulation of intestinal microbial homeostasis by EA may further affect lipid metabolism in CUMS rats, and thus play an antidepressant role. CONCLUSION This study suggested that EA has potential antidepressant effects by regulating gut microbiota composition and abundance, subsequently affecting lipid metabolism.
Collapse
Affiliation(s)
- Dong-Mei Duan
- No.1 Health Care Department, Second Medical Center of Chinese, PLA General Hospital, 100853, China
| | - Yi-Chen Wang
- Chinese PLA Medical School, 100853, China; Chinese PLA General Hospital, 100853, China
| | - Xin Hu
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing 100853, China; School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Yuan-Bo Wang
- Chinese PLA Medical School, 100853, China; Chinese PLA General Hospital, 100853, China
| | - Yu-Qing Wang
- Chinese PLA Medical School, 100853, China; Chinese PLA General Hospital, 100853, China
| | - Yuan Hu
- Chinese PLA General Hospital, 100853, China
| | | | - Xian-Zhe Dong
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing 100853, China.
| |
Collapse
|
15
|
Hua X, Ficaro MK, Wallace NL, Dai J. Epidermal RORα Maintains Barrier Integrity and Prevents Allergic Inflammation by Regulating Late Differentiation and Lipid Metabolism. Int J Mol Sci 2024; 25:10698. [PMID: 39409027 PMCID: PMC11476758 DOI: 10.3390/ijms251910698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 10/20/2024] Open
Abstract
The skin epidermis provides a barrier that is imperative for preventing transepidermal water loss (TEWL) and protecting against environmental stimuli. The underlying molecular mechanisms for regulating barrier functions and sustaining its integrity remain unclear. RORα is a nuclear receptor highly expressed in the epidermis of normal skin. Clinical studies showed that the epidermal RORα expression is significantly reduced in the lesions of multiple inflammatory skin diseases. In this study, we investigate the central roles of RORα in stabilizing skin barrier function using mice with an epidermis-specific Rora gene deletion (RoraEKO). While lacking spontaneous skin lesions or dermatitis, RoraEKO mice exhibited an elevated TEWL rate and skin characteristics of barrier dysfunction. Immunostaining and Western blot analysis revealed low levels of cornified envelope proteins in the RoraEKO epidermis, suggesting disturbed late epidermal differentiation. In addition, an RNA-seq analysis showed the altered expression of genes related to "keratinization" and "lipid metabolism" in RORα deficient epidermis. A lipidomic analysis further uncovered an aberrant ceramide composition in the RoraEKO epidermis. Importantly, epidermal Rora ablation greatly exaggerated percutaneous allergic inflammatory responses to oxazolone in an allergic contact dermatitis (ACD) mouse model. Our results substantiate the essence of epidermal RORα in maintaining late keratinocyte differentiation and normal barrier function while suppressing cutaneous inflammation.
Collapse
Affiliation(s)
- Xiangmei Hua
- School of Pharmacy, The University of Wisconsin, Madison, WI 53705, USA; (X.H.); (M.K.F.); (N.L.W.)
| | - Maria K. Ficaro
- School of Pharmacy, The University of Wisconsin, Madison, WI 53705, USA; (X.H.); (M.K.F.); (N.L.W.)
| | - Nicole L. Wallace
- School of Pharmacy, The University of Wisconsin, Madison, WI 53705, USA; (X.H.); (M.K.F.); (N.L.W.)
| | - Jun Dai
- School of Pharmacy, The University of Wisconsin, Madison, WI 53705, USA; (X.H.); (M.K.F.); (N.L.W.)
- Carbone Cancer Center, The University of Wisconsin, Madison, WI 53705, USA
- Skin Disease Research Center, The University of Wisconsin, Madison, WI 53705, USA
| |
Collapse
|
16
|
Nava M, Rowe SJ, Taylor RJ, Kahne D, Nocera DG. Determination of Initial Rates of Lipopolysaccharide Transport. Biochemistry 2024; 63:2440-2448. [PMID: 39264328 PMCID: PMC11447908 DOI: 10.1021/acs.biochem.4c00379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 09/13/2024]
Abstract
Nonvesicular lipid trafficking pathways are an important process in every domain of life. The mechanisms of these processes are poorly understood in part due to the difficulty in kinetic characterization. One important class of glycolipids, lipopolysaccharides (LPS), are the primary lipidic component of the outer membrane of Gram-negative bacteria. LPS are synthesized in the inner membrane and then trafficked to the cell surface by the lipopolysaccharide transport proteins, LptB2FGCADE. By characterizing the interaction of a fluorescent probe and LPS, we establish a quantitative assay to monitor the flux of LPS between proteoliposomes on the time scale of seconds. We then incorporate photocaged ATP into this system, which allows for light-based control of the initiation of LPS transport. This control allows us to measure the initial rate of LPS transport (3.0 min-1 per LptDE). We also find that the rate of LPS transport by the Lpt complex is independent of the structure of LPS. In contrast, we find the rate of LPS transport is dependent on the proper function of the LptDE complex. Mutants of the outer membrane Lpt components, LptDE, that cause defective LPS assembly in live cells display attenuated transport rates and slower ATP hydrolysis compared to wild type proteins. Analysis of these mutants reveals that the rates of ATP hydrolysis and LPS transport are correlated such that 1.2 ± 0.2 ATP are hydrolyzed for each LPS transported. This correlation suggests a model where the outer membrane components ensure the coupling of ATP hydrolysis and LPS transport by stabilizing a transport-active state of the Lpt bridge.
Collapse
Affiliation(s)
| | | | - Rebecca J. Taylor
- Department of Chemistry and Chemical
Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Daniel Kahne
- Department of Chemistry and Chemical
Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Daniel G. Nocera
- Department of Chemistry and Chemical
Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
17
|
Prell A, Wigger D, Huwiler A, Schumacher F, Kleuser B. The sphingosine kinase 2 inhibitors ABC294640 and K145 elevate (dihydro)sphingosine 1-phosphate levels in various cells. J Lipid Res 2024; 65:100631. [PMID: 39182604 PMCID: PMC11465068 DOI: 10.1016/j.jlr.2024.100631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/12/2024] [Accepted: 08/19/2024] [Indexed: 08/27/2024] Open
Abstract
Sphingosine kinases (SphKs), enzymes that produce the bioactive lipids dihydrosphingosine 1-phosphate (dhS1P) and sphingosine 1-phosphate (S1P), are associated with various diseases, including cancer and infections. For this reason, a number of SphK inhibitors have been developed. Although off-target effects have been described for selected agents, SphK inhibitors are mostly used in research without monitoring the effects on the sphingolipidome. We have now investigated the effects of seven commonly used SphK inhibitors (5c, ABC294640 (opaganib), N,N-dimethylsphingosine, K145, PF-543, SLM6031434, and SKI-II) on profiles of selected sphingolipids in Chang, HepG2, and human umbilical vein endothelial cells. While we observed the expected (dh)S1P reduction for N,N-dimethylsphingosine, PF-543, SKI-II, and SLM6031434, 5c showed hardly any effect. Remarkably, for K145 and ABC294640, both reported to be specific for SphK2, we observed dose-dependent strong increases in dhS1P and S1P across cell lines. Compensatory effects of SphK1 could be excluded, as this observation was also made in SphK1-deficient HK-2 cells. Furthermore, we observed effects on dihydroceramide desaturase activity for all inhibitors tested, as has been previously noted for ABC294640 and SKI-II. In additional mechanistic studies, we investigated the massive increase of dhS1P and S1P after short-term cell treatment with ABC294640 and K145 in more detail. We found that both compounds affect sphingolipid de novo synthesis, with 3-ketodihydrosphingosine reductase and dihydroceramide desaturase as their targets. Our study indicates that none of the seven SphK inhibitors tested was free of unexpected on-target and/or off-target effects. Therefore, it is important to monitor cellular sphingolipid profiles when SphK inhibitors are used in mechanistic studies.
Collapse
Affiliation(s)
- Agata Prell
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Dominik Wigger
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Andrea Huwiler
- Institute of Pharmacology, Inselspital, INO-F, University of Bern, Bern, Switzerland
| | - Fabian Schumacher
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Burkhard Kleuser
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany.
| |
Collapse
|
18
|
Guo A, Wu Q, Yan X, Chen K, Liu Y, Liang D, Yang Y, Luo Q, Xiong M, Yu Y, Fei E, Chen F. Differential roles of lysosomal cholesterol transporters in the development of C. elegans NMJs. Life Sci Alliance 2024; 7:e202402584. [PMID: 39084875 PMCID: PMC11291935 DOI: 10.26508/lsa.202402584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 07/21/2024] [Accepted: 07/22/2024] [Indexed: 08/02/2024] Open
Abstract
Cholesterol homeostasis in neurons is critical for synapse formation and maintenance. Neurons with impaired cholesterol uptake undergo progressive synapse loss and eventual degeneration. To investigate the molecular mechanisms of neuronal cholesterol homeostasis and its role during synapse development, we studied motor neurons of Caenorhabditis elegans because these neurons rely on dietary cholesterol. Combining lipidomic analysis, we discovered that NCR-1, a lysosomal cholesterol transporter, promotes cholesterol absorption and synapse development. Loss of ncr-1 causes smaller synapses, and low cholesterol exacerbates the deficits. Moreover, NCR-1 deficiency hinders the increase in synapses under high cholesterol. Unexpectedly, NCR-2, the NCR-1 homolog, increases the use of cholesterol and sphingomyelins and impedes synapse formation. NCR-2 deficiency causes an increase in synapses regardless of cholesterol concentration. Inhibiting the degradation or synthesis of sphingomyelins can induce or suppress the synaptic phenotypes in ncr-2 mutants. Our findings indicate that neuronal cholesterol homeostasis is differentially controlled by two lysosomal cholesterol transporters and highlight the importance of neuronal cholesterol homeostasis in synapse development.
Collapse
Affiliation(s)
- Amin Guo
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Qi Wu
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Xin Yan
- School of Life Sciences, Nanchang University, Nanchang, China
| | - Kanghua Chen
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yuxiang Liu
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Dingfa Liang
- Queen Mary School of Nanchang University, Jiangxi Medical College, Nanchang, China
| | - Yuxiao Yang
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Qunfeng Luo
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Mingtao Xiong
- Institute of Biomedical Innovation, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yong Yu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Erkang Fei
- Institute of Biomedical Innovation, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Fei Chen
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
19
|
Foran D, Antoniades C, Akoumianakis I. Emerging Roles for Sphingolipids in Cardiometabolic Disease: A Rational Therapeutic Target? Nutrients 2024; 16:3296. [PMID: 39408263 PMCID: PMC11478599 DOI: 10.3390/nu16193296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/19/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Cardiovascular disease is a leading cause of morbidity and mortality. New research elucidates increasingly complex relationships between cardiac and metabolic health, giving rise to new possible therapeutic targets. Sphingolipids are a heterogeneous class of bioactive lipids with critical roles in normal human physiology. They have also been shown to play both protective and deleterious roles in the pathogenesis of cardiovascular disease. Ceramides are implicated in dysregulating insulin signalling, vascular endothelial function, inflammation, oxidative stress, and lipoprotein aggregation, thereby promoting atherosclerosis and vascular disease. Ceramides also advance myocardial disease by enhancing pathological cardiac remodelling and cardiomyocyte death. Glucosylceramides similarly contribute to insulin resistance and vascular inflammation, thus playing a role in atherogenesis and cardiometabolic dysfunction. Sphingosing-1-phosphate, on the other hand, may ameliorate some of the pathological functions of ceramide by protecting endothelial barrier integrity and promoting cell survival. Sphingosine-1-phosphate is, however, implicated in the development of cardiac fibrosis. This review will explore the roles of sphingolipids in vascular, cardiac, and metabolic pathologies and will evaluate the therapeutic potential in targeting sphingolipids with the aim of prevention and reversal of cardiovascular disease in order to improve long-term cardiovascular outcomes.
Collapse
Affiliation(s)
| | | | - Ioannis Akoumianakis
- Cardiovascular Medicine Division, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK; (D.F.); (C.A.)
| |
Collapse
|
20
|
Luo Q, Crivelli SM, Zong S, Giovagnoni C, van Kruining D, Mané-Damas M, den Hoedt S, Berkes D, De Vries HE, Mulder MT, Walter J, Waelkens E, Derua R, Swinnen JV, Dehairs J, Losen M, Martinez-Martinez P. The Effect of FTY720 on Sphingolipid Imbalance and Cognitive Decline in Aged EFAD Mice. J Alzheimers Dis Rep 2024; 8:1317-1327. [PMID: 39434823 PMCID: PMC11491960 DOI: 10.3233/adr-230053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 07/25/2024] [Indexed: 10/23/2024] Open
Abstract
Background During Alzheimer's disease (AD) progression, there is a decline in the bioactive sphingolipid sphingosine-1-phosphate (S1P). Previous research showed that FTY720, an S1P mimetic, prevented cognitive decline and reduced ceramide levels in transgenic mice with familial AD carrying the human APOE4 gene (E4FAD) at 6-7 months of age. Objective The objective of this study is to explore the protective effects of FTY720 at late-stage AD. Methods Male mice aged 9.5 to 10.5 months were orally administered FTY720 (0.1 mg/kg) via oral gavage for 6 weeks. A pre-test of water maze was used for evaluating the pathological status. After 4 weeks of administration, memory, locomotion, and anxiety were assessed. Cortex samples were analyzed for amyloid-β (Aβ) and sphingolipid levels. Results Compared with APOE3 mice, APOE4, E3FAD and E4FAD mice exhibited significant memory deficits. After 6 weeks administration, FTY720 did not alleviate memory deficits in EFAD mice. Lipid analysis revealed that S1P was significantly reduced in EFAD mice (E3FAD or E4FAD) compared to controls (APOE3 and APOE4). Ceramide level alterations were predominantly dependent on APOE isoforms rather than AD transgenes. Interestingly, Cer (d18 : 1/22 : 1) was elevated in APOE4 mice compared to APOE3, and FTY720 reduced it. Conclusions E4FAD and APOE4 mice exhibited significant spatial memory deficits and higher ceramide concentrations compared to APOE3 mice. FTY720 did not reverse memory deficits in E4FAD and APOE4 mice but reduced specific ceramide species. This study provides insights into the association between sphingolipids and APOE4 in advanced AD stages, exploring potential therapeutic targeting of sphingolipid metabolism.
Collapse
Affiliation(s)
- Qian Luo
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, Qingdao, China
| | - Simone M. Crivelli
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Shenghua Zong
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Caterina Giovagnoni
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Daan van Kruining
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Marina Mané-Damas
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Sandra den Hoedt
- Department of Internal Medicine, Laboratory Vascular Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Dusan Berkes
- Department of Organic Chemistry, Slovak University of Technology, Bratislava, Slovak Republic
| | - Helga E. De Vries
- Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, Amsterdam UMC Vrije Universiteit, Amsterdam, The Netherlands
| | - Monique T. Mulder
- Department of Internal Medicine, Laboratory Vascular Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Jochen Walter
- Department of Neurology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Etienne Waelkens
- Laboratory of Protein Phosphorylation and Proteomics, KU Leuven, Leuven, Belgium
| | - Rita Derua
- Laboratory of Protein Phosphorylation and Proteomics, KU Leuven, Leuven, Belgium
| | | | - Jonas Dehairs
- Laboratory of Lipid Metabolism and Cancer, KU Leuven, Leuven, Belgium
| | - Mario Losen
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Pilar Martinez-Martinez
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
21
|
He R, Tang J, Lai H, Zhang T, Du L, Wei S, Zhao P, Tang G, Liu J, Luo X. Deciphering the role of sphingolipid metabolism in the immune microenvironment and prognosis of esophageal cancer via single-cell sequencing and bulk data analysis. Discov Oncol 2024; 15:505. [PMID: 39333432 PMCID: PMC11436545 DOI: 10.1007/s12672-024-01379-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 09/20/2024] [Indexed: 09/29/2024] Open
Abstract
BACKGROUND Esophageal squamous cell carcinoma (ESCC) stands as a significant global health challenge, distinguished by its aggressive progression from the esophageal epithelium. Central to this malignancy is sphingolipid metabolism, a critical pathway that governs key cellular processes, including apoptosis and immune regulation, thereby influencing tumor behavior. The advent of single-cell and transcriptome sequencing technologies has catalyzed significant advancements in oncology research, offering unprecedented insights into the molecular underpinnings of cancer. METHODS We explored sphingolipid metabolism-related genes in ESCC using scRNA-seq data from GEO and transcriptome data from TCGA. We assessed 97 genes in epithelial cells with AUCell, UCell, and singscore algorithms, followed by bulk RNA-seq and differential analysis to identify prognosis-related genes. Immune infiltration and potential immunotherapeutic strategies were also investigated, and tumor gene mutations and drug treatment strategies were analyzed. RESULT Our study identified distinct gene expression patterns, highlighting ARSD, CTSA, DEGS1, and PPTQ's roles in later cellular stages. We identified seven independent prognostic genes and created a precise nomogram for prognosis. CONCLUSION This study integrates single-cell and transcriptomic data to provide a reliable prognostic model associated with sphingolipid metabolism and to inform immunotherapy and pharmacotherapy for ESCC at the genetic level. The findings have significant implications for precision therapy in esophageal cancer.
Collapse
Affiliation(s)
- Rongzhang He
- Gastroenterology Department, Guangyuan Central Hospital, Guangyuan, China
| | - Jing Tang
- Gastroenterology Department, Guangyuan Central Hospital, Guangyuan, China
| | - Haotian Lai
- School of Clinical Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Tianchi Zhang
- Department of General Surgery, Dazhou Central Hospital, Dazhou, China
| | - Linjuan Du
- Oncology department, Dazhou Central Hospital, Dazhou, China
| | - Siqi Wei
- Gastroenterology Department, Guangyuan Central Hospital, Guangyuan, China
| | - Ping Zhao
- Gastroenterology Department, Guangyuan Central Hospital, Guangyuan, China
| | - Guobin Tang
- Gastroenterology Department, Guangyuan Central Hospital, Guangyuan, China
| | - Jie Liu
- Department of General Surgery, Dazhou Central Hospital, Dazhou, China.
| | - Xiufang Luo
- Geriatric department, Dazhou Central Hospital, Dazhou, China.
| |
Collapse
|
22
|
Suhaiman L, Belmonte SA. Lipid remodeling in acrosome exocytosis: unraveling key players in the human sperm. Front Cell Dev Biol 2024; 12:1457638. [PMID: 39376630 PMCID: PMC11456524 DOI: 10.3389/fcell.2024.1457638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/03/2024] [Indexed: 10/09/2024] Open
Abstract
It has long been thought that exocytosis was driven exclusively by well-studied fusion proteins. Some decades ago, the role of lipids became evident and escalated interest in the field. Our laboratory chose a particular cell to face this issue: the human sperm. What makes this cell special? Sperm, as terminal cells, are characterized by their scarcity of organelles and the complete absence of transcriptional and translational activities. They are specialized for a singular membrane fusion occurrence: the exocytosis of the acrosome. This unique trait makes them invaluable for the study of exocytosis in isolation. We will discuss the lipids' role in human sperm acrosome exocytosis from various perspectives, with a primary emphasis on our contributions to the field. Sperm cells have a unique lipid composition, very rare and not observed in many cell types, comprising a high content of plasmalogens, long-chain, and very-long-chain polyunsaturated fatty acids that are particular constituents of some sphingolipids. This review endeavors to unravel the impact of membrane lipid composition on the proper functioning of the exocytic pathway in human sperm and how this lipid dynamic influences its fertilizing capability. Evidence from our and other laboratories allowed unveiling the role and importance of multiple lipids that drive exocytosis. This review highlights the role of cholesterol, diacylglycerol, and particular phospholipids like phosphatidic acid, phosphatidylinositol 4,5-bisphosphate, and sphingolipids in driving sperm acrosome exocytosis. Furthermore, we provide a comprehensive overview of the factors and enzymes that regulate lipid turnover during the exocytic course. A more thorough grasp of the role played by lipids transferred from sperm can provide insights into certain causes of male infertility. It may lead to enhancements in diagnosing infertility and techniques like assisted reproductive technology (ART).
Collapse
Affiliation(s)
- Laila Suhaiman
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU)-CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), Argentina
- Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Silvia A. Belmonte
- Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
- Instituto de Histología y Embriología de Mendoza (IHEM) “Dr. Mario H. Burgos”, CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), Universidad Nacional de Cuyo, Mendoza, Argentina
| |
Collapse
|
23
|
Dagogo-Jack S, Asuzu P, Wan J, Grambergs R, Stentz F, Mandal N. Plasma Ceramides and Other Sphingolipids in Relation to Incident Prediabetes in a Longitudinal Biracial Cohort. J Clin Endocrinol Metab 2024; 109:2530-2540. [PMID: 38501230 PMCID: PMC11403313 DOI: 10.1210/clinem/dgae179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/23/2024] [Accepted: 03/15/2024] [Indexed: 03/20/2024]
Abstract
CONTEXT Sphingolipids are linked to the pathogenesis of type 2 diabetes. OBJECTIVE To test the hypothesis that plasma sphingolipid profiles predict incident prediabetes. DESIGN A case-control study nested in the Pathobiology of Prediabetes in a Biracial Cohort study, a 5-year follow-up study. SETTING Academic health center. PARTICIPANTS Normoglycemic adults enrolled in the Pathobiology of Prediabetes in a Biracial Cohort study. Assessments included oral glucose tolerance test, insulin sensitivity, and insulin secretion. Participants with incident prediabetes were matched in age, sex, and ethnicity with nonprogressors. INTERVENTIONS We assayed 58 sphingolipid species (ceramides, monohexosyl ceramides, sphingomyelins, and sphingosine) using liquid chromatography/tandem mass spectrometry in baseline plasma levels from participants and determined association with prediabetes risk. MAIN OUTCOME MEASURE The primary outcome was progression from normoglycemia to prediabetes, defined as impaired fasting glucose or impaired glucose tolerance. RESULTS The mean age of participants (N = 140; 50% Black, 50% female) was 48.1 ± 8.69 years, body mass index 30.1 ± 5.78 kg/m2, fasting plasma glucose 92.7 ± 5.84 mg/dL, and 2-hour plasma glucose 121 ± 23.3 mg/dL. Of the 58 sphingolipid species assayed, higher ratios of sphingomyelin C26:0/C26:1 (OR, 2.73 [95% CI, 1.172-4.408], P = .015) and ceramide C18:0/C18:1 (OR, 1.236 [95% CI, 1.042-1.466], P = .015) in baseline plasma specimens were significantly associated with progression to prediabetes during the 5-year follow-up period, after adjustments for age, race, sex, body mass index, fasting plasma glucose, 2-hour plasma glucose, insulin sensitivity, and insulin secretion. CONCLUSION We conclude that the saturated-to-monounsaturated ratios of long-chain ceramide C18:0/C18:1 and very-long-chain sphingomyelin C26:0/C26:1 are potential biomarkers of prediabetes risk among individuals with parental history of type 2 diabetes.
Collapse
Affiliation(s)
- Samuel Dagogo-Jack
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- General Clinical Research Center, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Peace Asuzu
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Jim Wan
- Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Richard Grambergs
- Department of Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Frankie Stentz
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Nawajes Mandal
- Departments of Ophthalmology, Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Memphis VA Medical Center, Memphis, TN 38104, USA
| |
Collapse
|
24
|
Kumar A, Tatarian J, Shakhnovich V, Chevalier RL, Sudman M, Lovell DJ, Thompson SD, Becker ML, Funk RS. Identification of Plasma Metabolomic Biomarkers of Juvenile Idiopathic Arthritis. Metabolites 2024; 14:499. [PMID: 39330506 PMCID: PMC11434325 DOI: 10.3390/metabo14090499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/03/2024] [Accepted: 09/06/2024] [Indexed: 09/28/2024] Open
Abstract
Identification of disease and therapeutic biomarkers remains a significant challenge in the early diagnosis and effective treatment of juvenile idiopathic arthritis (JIA). In this study, plasma metabolomic profiling was conducted to identify disease-related metabolic biomarkers associated with JIA. Plasma samples from treatment-naïve JIA patients and non-JIA reference patients underwent global metabolomic profiling across discovery (60 JIA, 60 non-JIA) and replication (49 JIA, 38 non-JIA) cohorts. Univariate analysis identified significant metabolites (q-value ≤ 0.05), followed by enrichment analysis using ChemRICH and metabolic network mapping with MetaMapp and Cytoscape. Receiver operating characteristic (ROC) analysis determined the top discriminating biomarkers based on area under the curve (AUC) values. A total of over 800 metabolites were measured, consisting of 714 known and 155 unknown compounds. In the discovery cohort, 587 metabolites were significantly altered in JIA patients compared with the reference population (q < 0.05). In the replication cohort, 288 metabolites were significantly altered, with 78 overlapping metabolites demonstrating the same directional change in both cohorts. JIA was associated with a notable increase in plasma levels of sphingosine metabolites and fatty acid ethanolamides and decreased plasma levels of sarcosine, iminodiacetate, and the unknown metabolite X-12462. Chemical enrichment analysis identified cycloparaffins in the form of naproxen and its metabolites, unsaturated lysophospholipids, saturated phosphatidylcholines, sphingomyelins, ethanolamines, and saturated ceramides as the top discriminating biochemical clusters. ROC curve analysis identified 11 metabolites classified as highly discriminatory based on an AUC > 0.90, with the top discriminating metabolite being sphinganine-1-phosphate (AUC = 0.98). This study identifies specific metabolic changes in JIA, particularly within sphingosine metabolism, through both discovery and replication cohorts. Plasma metabolomic profiling shows promise in pinpointing JIA-specific biomarkers, differentiating them from those in healthy controls and Crohn's disease, which may improve diagnosis and treatment.
Collapse
Affiliation(s)
- Amar Kumar
- Center for Computational Biology, University of Kansas, Lawrence, KS 66047, USA
| | - Joshua Tatarian
- University of Kansas School of Medicine, Kansas City, KS 66160, USA
| | | | - Rachel L Chevalier
- University of Missouri-Kansas City School of Medicine & Children's Mercy Kansas City, Kansas City, MO 64108, USA
| | - Marc Sudman
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Daniel J Lovell
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Susan D Thompson
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Mara L Becker
- Division of Rheumatology, Department of Pediatrics, Duke University School of Medicine, Durham, NC 27710, USA
| | - Ryan S Funk
- Center for Computational Biology, University of Kansas, Lawrence, KS 66047, USA
- University of Kansas School of Medicine, Kansas City, KS 66160, USA
| |
Collapse
|
25
|
Moggio M, La Noce M, Tirino V, Papaccio G, Lepore M, Diano N. Sphingolipidomic profiling of human Dental Pulp Stem Cells undergoing osteogenic differentiation. Chem Phys Lipids 2024; 263:105420. [PMID: 39053614 DOI: 10.1016/j.chemphyslip.2024.105420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
It is now recognized that sphingolipids are involved in the regulation and pathophysiology of several cellular processes such as proliferation, migration, and survival. Growing evidence also implicates them in regulating the behaviour of stem cells, the use of which is increasingly finding application in regenerative medicine. A shotgun lipidomic study was undertaken to determine whether sphingolipid biomarkers exist that can regulate the proliferation and osteogenic differentiation of human Dental Pulp Stem Cells (hDPSCs). Sphingolipids were extracted and identified by direct infusion into an electrospray mass spectrometer. By using cells cultured in osteogenic medium and in medium free of osteogenic stimuli, as a control, we analyzed and compared the SPLs profiles. Both cellular systems were treated at different times (72 hours, 7 days, and 14 days) to highlight any changes in the sphingolipidomic profiles in the subsequent phases of the differentiation process. Signals from sphingolipid species demonstrating clear differences were selected, their relative abundance was determined, and statistical differences were analyzed. Thus, our work suggests a connection between sphingolipid metabolism and hDPSC osteogenic differentiation and provides new biomarkers for improving hDPSC-based orthopaedic regenerative medicine.
Collapse
Affiliation(s)
- Martina Moggio
- Department of Experimental Medicine - University of Campania "L. Vanvitelli", Via S. M. di Costantinopoli, 16, Naples 80138, Italy
| | - Marcella La Noce
- Department of Experimental Medicine - University of Campania "L. Vanvitelli", Via S. M. di Costantinopoli, 16, Naples 80138, Italy
| | - Virginia Tirino
- Department of Experimental Medicine - University of Campania "L. Vanvitelli", Via S. M. di Costantinopoli, 16, Naples 80138, Italy
| | - Gianpaolo Papaccio
- Department of Experimental Medicine - University of Campania "L. Vanvitelli", Via S. M. di Costantinopoli, 16, Naples 80138, Italy
| | - Maria Lepore
- Department of Experimental Medicine - University of Campania "L. Vanvitelli", Via S. M. di Costantinopoli, 16, Naples 80138, Italy
| | - Nadia Diano
- Department of Experimental Medicine - University of Campania "L. Vanvitelli", Via S. M. di Costantinopoli, 16, Naples 80138, Italy.
| |
Collapse
|
26
|
Soula M, Unlu G, Welch R, Chudnovskiy A, Uygur B, Shah V, Alwaseem H, Bunk P, Subramanyam V, Yeh HW, Khan A, Heissel S, Goodarzi H, Victora GD, Beyaz S, Birsoy K. Glycosphingolipid synthesis mediates immune evasion in KRAS-driven cancer. Nature 2024; 633:451-458. [PMID: 39112706 DOI: 10.1038/s41586-024-07787-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 07/03/2024] [Indexed: 08/17/2024]
Abstract
Cancer cells frequently alter their lipids to grow and adapt to their environment1-3. Despite the critical functions of lipid metabolism in membrane physiology, signalling and energy production, how specific lipids contribute to tumorigenesis remains incompletely understood. Here, using functional genomics and lipidomic approaches, we identified de novo sphingolipid synthesis as an essential pathway for cancer immune evasion. Synthesis of sphingolipids is surprisingly dispensable for cancer cell proliferation in culture or in immunodeficient mice but required for tumour growth in multiple syngeneic models. Blocking sphingolipid production in cancer cells enhances the anti-proliferative effects of natural killer and CD8+ T cells partly via interferon-γ (IFNγ) signalling. Mechanistically, depletion of glycosphingolipids increases surface levels of IFNγ receptor subunit 1 (IFNGR1), which mediates IFNγ-induced growth arrest and pro-inflammatory signalling. Finally, pharmacological inhibition of glycosphingolipid synthesis synergizes with checkpoint blockade therapy to enhance anti-tumour immune response. Altogether, our work identifies glycosphingolipids as necessary and limiting metabolites for cancer immune evasion.
Collapse
Affiliation(s)
- Mariluz Soula
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA
| | - Gokhan Unlu
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA
| | - Rachel Welch
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA
| | - Aleksey Chudnovskiy
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY, USA
| | - Beste Uygur
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA
| | - Vyom Shah
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | - Hanan Alwaseem
- The Proteomics Resource Center, The Rockefeller University, New York, NY, USA
| | - Paul Bunk
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | - Vishvak Subramanyam
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Hsi-Wen Yeh
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA
| | - Artem Khan
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA
| | - Søren Heissel
- The Proteomics Resource Center, The Rockefeller University, New York, NY, USA
| | - Hani Goodarzi
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Gabriel D Victora
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY, USA
| | - Semir Beyaz
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | - Kıvanç Birsoy
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
27
|
Roszczyc-Owsiejczuk K, Zabielski P, Imierska M, Pogodzińska K, Sadowska P, Błachnio-Zabielska A. Downregulation of CerS4 Instead of CerS2 in Liver Effectively Alleviates Hepatic Insulin Resistance in HFD Male Mice. Endocrinology 2024; 165:bqae118. [PMID: 39233348 DOI: 10.1210/endocr/bqae118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/27/2024] [Accepted: 09/04/2024] [Indexed: 09/06/2024]
Abstract
OBJECTIVE Consumption of a high-fat diet (HFD) induces insulin resistance (IRes), significantly affecting the maintenance of normal glucose homeostasis. Nevertheless, despite decades of extensive research, the mechanisms and pathogenesis of IRes remain incomplete. Recent studies have primarily explored lipid intermediates such as diacylglycerol (DAG), given a limited knowledge about the role of ceramide (Cer), which is a potential mediator of the IRes in the liver. METHODS In order to investigate the role of Cer produced by CerS2 and CerS4 for the purpose of inducing the hepatic IRes, we utilized a unique in vivo model employing shRNA-mediated hydrodynamic gene delivery in the liver of HFD-fed C57BL/6J mice. RESULTS Downregulation of CerS4 instead of CerS2 reduced specific liver Cers, notably C18:0-Cer and C24:0-Cer, as well as acylcarnitine levels. It concurrently promoted glycogen accumulation, leading to enhanced insulin sensitivity and glucose homeostasis. CONCLUSION Those findings demonstrate that CerS4 downregulating lowers fasting blood glucose levels and mitigates the HFD-induced hepatic IRes. It suggests that inhibiting the CerS4-mediated C18:0-Cer synthesis holds a promise to effectively address insulin resistance in obesity.
Collapse
Affiliation(s)
- Kamila Roszczyc-Owsiejczuk
- Department of Hygiene, Epidemiology and Metabolic Disorders, Medical University of Bialystok, 15-222 Bialystok, Poland
| | - Piotr Zabielski
- Department of Medical Biology, Medical University of Bialystok, 15-222 Bialystok, Poland
| | - Monika Imierska
- Department of Hygiene, Epidemiology and Metabolic Disorders, Medical University of Bialystok, 15-222 Bialystok, Poland
| | - Karolina Pogodzińska
- Department of Hygiene, Epidemiology and Metabolic Disorders, Medical University of Bialystok, 15-222 Bialystok, Poland
| | - Patrycja Sadowska
- Department of Hygiene, Epidemiology and Metabolic Disorders, Medical University of Bialystok, 15-222 Bialystok, Poland
| | - Agnieszka Błachnio-Zabielska
- Department of Hygiene, Epidemiology and Metabolic Disorders, Medical University of Bialystok, 15-222 Bialystok, Poland
| |
Collapse
|
28
|
Šakić Z, Atić A, Potočki S, Bašić-Jukić N. Sphingolipids and Chronic Kidney Disease. J Clin Med 2024; 13:5050. [PMID: 39274263 PMCID: PMC11396415 DOI: 10.3390/jcm13175050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/16/2024] Open
Abstract
Sphingolipids (SLs) are bioactive signaling molecules essential for various cellular processes, including cell survival, proliferation, migration, and apoptosis. Key SLs such as ceramides, sphingosine, and their phosphorylated forms play critical roles in cellular integrity. Dysregulation of SL levels is implicated in numerous diseases, notably chronic kidney disease (CKD). This review focuses on the role of SLs in CKD, highlighting their potential as biomarkers for early detection and prognosis. SLs maintain renal function by modulating the glomerular filtration barrier, primarily through the activity of podocytes. An imbalance in SLs can lead to podocyte damage, contributing to CKD progression. SL metabolism involves complex enzyme-catalyzed pathways, with ceramide serving as a central molecule in de novo and salvage pathways. Ceramides induce apoptosis and are implicated in oxidative stress and inflammation, while sphingosine-1-phosphate (S1P) promotes cell survival and vascular health. Studies have shown that SL metabolism disorders are linked to CKD progression, diabetic kidney disease, and glomerular diseases. Targeting SL pathways could offer novel therapeutic approaches for CKD. This review synthesizes recent research on SL signaling regulation in kidney diseases, emphasizing the importance of maintaining SL balance for renal health and the potential therapeutic benefits of modulating SL pathways.
Collapse
Affiliation(s)
- Zrinka Šakić
- Vuk Vrhovac University Clinic, Dugi dol 4a, 10000 Zagreb, Croatia
| | - Armin Atić
- Division of Nephrology, Arterial Hypertension, Dialysis and Transplantation, University Hospital Center Zagreb, 10000 Zagreb, Croatia
| | - Slavica Potočki
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Nikolina Bašić-Jukić
- Division of Nephrology, Arterial Hypertension, Dialysis and Transplantation, University Hospital Center Zagreb, 10000 Zagreb, Croatia
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
29
|
Liu Q, Wu X, Liu C, Wang N, Yin F, Wu H, Cao S, Zhao W, Wu H, Zhou A. Metabolomic and biochemical changes in the plasma and liver of toxic milk mice model of Wilson disease. J Pharm Biomed Anal 2024; 246:116255. [PMID: 38795427 DOI: 10.1016/j.jpba.2024.116255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/11/2024] [Accepted: 05/23/2024] [Indexed: 05/28/2024]
Abstract
Wilson disease (WD) is an inherited disorder characterized by abnormal copper metabolism with complex pathological features. Currently, this mechanism of copper overload-induced hepatic injury remains unclear. In this study, male toxic milk (TX) mice were selected as experimental subjects. Copper levels and biochemical indices were measured by atomic absorption spectroscopy (AAS) and kits. Liver tissue ultrastructure was observed by hematoxylin-eosin (H&E), sirius red staining and transmission electron microscopy. Plasma and liver metabolic profiles of TX mice were characterized by untargeted metabolomics. In addition, the expression of enzymes related to arachidonic acid metabolism in liver tissue was detected by Western blotting. The results showed the excessive copper content, concomitant oxidative stress, and hepatic tissue structural damage in TX mice. Seventy-eight metabolites were significantly different in WD, mainly involved in the metabolism of arachidonic acid, glycerophospholipids, sphingolipids, niacin and nicotinamide, and phenylalanine. Furthermore, the arachidonic acid metabolic pathway is an important pathway involved in WD metabolism. The level of arachidonic acid in the liver of TX mice was significantly lower (p < 0.01) compared to the control group. The expression of cytoplasmic phospholipase A2 (cPLA2) and arachidonic acid 12-lipoxygenase (ALOX12), related to the arachidonic acid metabolic pathway, was significantly different in the liver of TX mice (p < 0.01). Modulation of the arachidonic acid metabolic pathway could be a potential therapeutic strategy to alleviate WD symptoms.
Collapse
Affiliation(s)
- Qiao Liu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Xiaoyuan Wu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Cuicui Liu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Ni Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Fengxia Yin
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Huan Wu
- The Experimental Research Center, Anhui University of Chinese Medicine, Hefei 230038, China; Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Functional Activity and Resource Utilization on Edible and Medicinal Fungi Joint Laboratory of Anhui Province, Hefei 230038, China
| | - Shijian Cao
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230031, China
| | - Wenchen Zhao
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh 15219, USA
| | - Hongfei Wu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230038, China; Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Functional Activity and Resource Utilization on Edible and Medicinal Fungi Joint Laboratory of Anhui Province, Hefei 230038, China.
| | - An Zhou
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230038, China; Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Functional Activity and Resource Utilization on Edible and Medicinal Fungi Joint Laboratory of Anhui Province, Hefei 230038, China.
| |
Collapse
|
30
|
Alpizar-Sosa E, Zimbres FM, Mantilla BS, Dickie EA, Wei W, Burle-Caldas GA, Filipe LNS, Van Bocxlaer K, Price HP, Ibarra-Meneses AV, Beaudry F, Fernandez-Prada C, Whitfield PD, Barrett MP, Denny PW. Evaluation of the Leishmania Inositol Phosphorylceramide Synthase as a Drug Target Using a Chemical and Genetic Approach. ACS Infect Dis 2024; 10:2913-2928. [PMID: 39023360 PMCID: PMC11320567 DOI: 10.1021/acsinfecdis.4c00284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/20/2024]
Abstract
The lack of effective vaccines and the development of resistance to the current treatments highlight the urgent need for new anti-leishmanials. Sphingolipid metabolism has been proposed as a promising source of Leishmania-specific targets as these lipids are key structural components of the eukaryotic plasma membrane and are involved in distinct cellular events. Inositol phosphorylceramide (IPC) is the primary sphingolipid in the Leishmania species and is the product of a reaction mediated by IPC synthase (IPCS). The antihistamine clemastine fumarate has been identified as an inhibitor of IPCS in L. major and a potent anti-leishmanial in vivo. Here we sought to further examine the target of this compound in the more tractable species L. mexicana, using an approach combining genomic, proteomic, metabolomic and lipidomic technologies, with molecular and biochemical studies. While the data demonstrated that the response to clemastine fumarate was largely conserved, unexpected disturbances beyond sphingolipid metabolism were identified. Furthermore, while deletion of the gene encoding LmxIPCS had little impact in vitro, it did influence clemastine fumarate efficacy and, importantly, in vivo pathogenicity. Together, these data demonstrate that clemastine does inhibit LmxIPCS and cause associated metabolic disturbances, but its primary target may lie elsewhere.
Collapse
Affiliation(s)
| | - Flavia M. Zimbres
- Department
of Biosciences, University of Durham, South Road, Durham, DH1 3LE, U.K.
| | - Brian S. Mantilla
- Department
of Biosciences, University of Durham, South Road, Durham, DH1 3LE, U.K.
| | - Emily A. Dickie
- School
of Infection and Immunity, College of Medical, Veterinary and Life
Sciences, University of Glasgow, Glasgow G12 8TA, U.K.
| | - Wenbin Wei
- Department
of Biosciences, University of Durham, South Road, Durham, DH1 3LE, U.K.
| | - Gabriela A. Burle-Caldas
- Department
of Biosciences, University of Durham, South Road, Durham, DH1 3LE, U.K.
- Departamento
de Bioquímica e Imunologia, Universidade
Federal de Minas Gerais, Caixa Postal 486 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Laura N. S. Filipe
- Department
of Biosciences, University of Durham, South Road, Durham, DH1 3LE, U.K.
| | - Katrien Van Bocxlaer
- York
Biomedical Research Institute, Hull York Medical School, University of York, York YO10 5NG, U.K.
| | - Helen P. Price
- School
of Life Sciences, Keele University, Staffordshire, ST5 5BG, U.K.
| | - Ana V. Ibarra-Meneses
- Département
de Pathologie et Microbiologie, Faculté de Médecine
Vétérinaire, Université
de Montréal, Saint-Hyacinthe, Quebec J2S 2M2, Canada
| | - Francis Beaudry
- Département
de Biomédecine, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Quebec J2S 2M2, Canada
| | - Christopher Fernandez-Prada
- Département
de Pathologie et Microbiologie, Faculté de Médecine
Vétérinaire, Université
de Montréal, Saint-Hyacinthe, Quebec J2S 2M2, Canada
| | - Philip D. Whitfield
- School
of Infection and Immunity, College of Medical, Veterinary and Life
Sciences, University of Glasgow, Glasgow G12 8TA, U.K.
| | - Michael P. Barrett
- School
of Infection and Immunity, College of Medical, Veterinary and Life
Sciences, University of Glasgow, Glasgow G12 8TA, U.K.
| | - Paul W. Denny
- Department
of Biosciences, University of Durham, South Road, Durham, DH1 3LE, U.K.
| |
Collapse
|
31
|
Anitha M, Kumar SM, Koo I, Perdew GH, Srinivasan S, Patterson AD. Modulation of Ceramide-Induced Apoptosis in Enteric Neurons by Aryl Hydrocarbon Receptor Signaling: Unveiling a New Pathway beyond ER Stress. Int J Mol Sci 2024; 25:8581. [PMID: 39201268 PMCID: PMC11354200 DOI: 10.3390/ijms25168581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/26/2024] [Accepted: 08/01/2024] [Indexed: 09/02/2024] Open
Abstract
2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a persistent organic pollutant and a potent aryl hydrocarbon receptor (AHR) ligand, causes delayed intestinal motility and affects the survival of enteric neurons. In this study, we investigated the specific signaling pathways and molecular targets involved in TCDD-induced enteric neurotoxicity. Immortalized fetal enteric neuronal (IM-FEN) cells treated with 10 nM TCDD exhibited cytotoxicity and caspase 3/7 activation, indicating apoptosis. Increased cleaved caspase-3 expression with TCDD treatment, as assessed by immunostaining in enteric neuronal cells isolated from WT mice but not in neural crest cell-specific Ahr deletion mutant mice (Wnt1Cre+/-/Ahrb(fl/fl)), emphasized the pivotal role of AHR in this process. Importantly, the apoptosis in IM-FEN cells treated with TCDD was mediated through a ceramide-dependent pathway, independent of endoplasmic reticulum stress, as evidenced by increased ceramide synthesis and the reversal of cytotoxic effects with myriocin, a potent inhibitor of ceramide biosynthesis. We identified Sptlc2 and Smpd2 as potential gene targets of AHR in ceramide regulation by a chromatin immunoprecipitation (ChIP) assay in IM-FEN cells. Additionally, TCDD downregulated phosphorylated Akt and phosphorylated Ser9-GSK-3β levels, implicating the PI3 kinase/AKT pathway in TCDD-induced neurotoxicity. Overall, this study provides important insights into the mechanisms underlying TCDD-induced enteric neurotoxicity and identifies potential targets for the development of therapeutic interventions.
Collapse
Affiliation(s)
- Mallappa Anitha
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (M.A.); (I.K.); (G.H.P.)
| | - Supriya M. Kumar
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (M.A.); (I.K.); (G.H.P.)
| | - Imhoi Koo
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (M.A.); (I.K.); (G.H.P.)
| | - Gary H. Perdew
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (M.A.); (I.K.); (G.H.P.)
| | - Shanthi Srinivasan
- Department of Digestive Diseases, Emory University School of Medicine, Atlanta, GA 30322, USA;
- Atlanta VA Medical Center, Decatur, GA 30033, USA
| | - Andrew D. Patterson
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (M.A.); (I.K.); (G.H.P.)
| |
Collapse
|
32
|
Giussani P, Brioschi L, Gjoni E, Riccitelli E, Viani P. Sphingosine 1-Phosphate Stimulates ER to Golgi Ceramide Traffic to Promote Survival in T98G Glioma Cells. Int J Mol Sci 2024; 25:8270. [PMID: 39125841 PMCID: PMC11312410 DOI: 10.3390/ijms25158270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/04/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
Glioblastoma multiforme is the most common and fatal brain tumor among human cancers. Ceramide (Cer) and Sphingosine 1-phosphate (S1P) have emerged as bioeffector molecules that control several biological processes involved in both cancer development and resistance. Cer acts as a tumor suppressor, inhibiting cancer progression, promoting apoptosis, enhancing immunotherapy and sensitizing cells to chemotherapy. In contrast, S1P functions as an onco-promoter molecule, increasing proliferation, survival, invasiveness, and resistance to drug-induced apoptosis. The pro-survival PI3K/Akt pathway is a recognized downstream target of S1P, and we have previously demonstrated that in glioma cells it also improves Cer transport and metabolism towards complex sphingolipids in glioma cells. Here, we first examined the possibility that, in T98G glioma cells, S1P may regulate Cer metabolism through PI3K/Akt signaling. Our research showed that exogenous S1P increases the rate of vesicular trafficking of Cer from the endoplasmic reticulum (ER) to the Golgi apparatus through S1P receptor-mediated activation of the PI3K/Akt pathway. Interestingly, the effect of S1P results in cell protection against toxicity arising from Cer accumulation in the ER, highlighting the role of S1P as a survival factor to escape from the Cer-generating cell death response.
Collapse
Affiliation(s)
| | | | | | | | - Paola Viani
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, LITA Segrate, Via Fratelli Cervi, 93, 20054 Segrate, Italy; (P.G.); (L.B.); (E.G.); (E.R.)
| |
Collapse
|
33
|
Kumar S, Singh A, Pandey P, Khopade A, Sawant KK. Application of sphingolipid-based nanocarriers in drug delivery: an overview. Ther Deliv 2024; 15:619-637. [PMID: 39072358 PMCID: PMC11412150 DOI: 10.1080/20415990.2024.2377066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 07/03/2024] [Indexed: 07/30/2024] Open
Abstract
Sphingolipids (SL) are well recognized for their cell signaling through extracellular and intracellular pathways. Based on chemistry different types of SL are biosynthesized in mammalian cells and have specific function in cellular activity. SL has an ampiphilic structure with have hydrophobic body attached to the polar head enables their use as a drug delivery agent in the form of nanocarriers. SL-based liposomes can improve the solubility of lipophilic drugs through host and drug complexes and are more stable than conventional liposomal formulations. Preclinical studies of SL nanocarriers are reported on topical delivery, oral delivery, ocular delivery, chemotherapeutic delivery, cardiovascular delivery and Alzheimer's disease. The commercial challenges and patents related to SL nanoformulations are highlighted in this article.
Collapse
Affiliation(s)
- Samarth Kumar
- Formulation Research & Development-Non-Orals, Sun Pharmaceutical Industries Ltd, Vadodara, 390012, Gujarat, India
- Faculty of Pharmacy, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390001, India
| | - Ajit Singh
- Formulation Research & Development-Non-Orals, Sun Pharmaceutical Industries Ltd, Vadodara, 390012, Gujarat, India
| | - Prachi Pandey
- Krishna School of Pharmacy & Research, KPGU, Vadodara, Gujarat, 391243, India
| | - Ajay Khopade
- Formulation Research & Development-Non-Orals, Sun Pharmaceutical Industries Ltd, Vadodara, 390012, Gujarat, India
| | - Krutika K Sawant
- Faculty of Pharmacy, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390001, India
| |
Collapse
|
34
|
Starodubtseva N, Chagovets V, Tokareva A, Dumanovskaya M, Kukaev E, Novoselova A, Frankevich V, Pavlovich SV, Sukhikh G. Diagnostic Value of Menstrual Blood Lipidomics in Endometriosis: A Pilot Study. Biomolecules 2024; 14:899. [PMID: 39199287 PMCID: PMC11351896 DOI: 10.3390/biom14080899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/22/2024] [Accepted: 07/22/2024] [Indexed: 09/01/2024] Open
Abstract
Endometriosis is a prevalent chronic inflammatory disease characterized by a considerable delay between initial symptoms and diagnosis through surgery. The pressing need for a timely, non-invasive diagnostic solution underscores the focus of current research efforts. This study examines the diagnostic potential of the menstrual blood lipidome. The lipid profile of 39 samples (23 women with endometriosis and 16 patients in a control group) was acquired using reverse-phase high-performance liquid chromatography-mass spectrometry with LipidMatch processing and identification. Profiles were normalized based on total ion counts. Significant differences in lipids were determined using the Mann-Whitney test. Lipids for the diagnostic model, based on logistic regression, were selected using a combination of variance importance projection filters and Akaike information criteria. Levels of ceramides, sphingomyelins, cardiolipins, triacylglycerols, acyl- and alkenyl-phosphatidylethanolamines, and alkenyl-phosphatidylcholines increased, while acyl- and alkyl-phosphatidylcholines decreased in cases of endometriosis. Plasmenylphosphatidylethanolamine PE P-16:0/18:1 and cardiolipin CL 16:0_18:0_22:5_22:6 serve as marker lipids in the diagnostic model, exhibiting a sensitivity of 81% and specificity of 85%. The diagnostic approach based on dried spots of menstrual blood holds promise as an alternative to traditional non-invasive methods for endometriosis screening.
Collapse
Affiliation(s)
- Natalia Starodubtseva
- National Medical Research Center for Obstetrics Gynecology and Perinatology Named after Academician V.I. Kulakov of the Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (N.S.); (A.T.); (M.D.); (E.K.); (A.N.); (V.F.); (S.V.P.); (G.S.)
- Moscow Center for Advanced Studies, 123592 Moscow, Russia
| | - Vitaliy Chagovets
- National Medical Research Center for Obstetrics Gynecology and Perinatology Named after Academician V.I. Kulakov of the Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (N.S.); (A.T.); (M.D.); (E.K.); (A.N.); (V.F.); (S.V.P.); (G.S.)
| | - Alisa Tokareva
- National Medical Research Center for Obstetrics Gynecology and Perinatology Named after Academician V.I. Kulakov of the Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (N.S.); (A.T.); (M.D.); (E.K.); (A.N.); (V.F.); (S.V.P.); (G.S.)
| | - Madina Dumanovskaya
- National Medical Research Center for Obstetrics Gynecology and Perinatology Named after Academician V.I. Kulakov of the Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (N.S.); (A.T.); (M.D.); (E.K.); (A.N.); (V.F.); (S.V.P.); (G.S.)
| | - Eugenii Kukaev
- National Medical Research Center for Obstetrics Gynecology and Perinatology Named after Academician V.I. Kulakov of the Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (N.S.); (A.T.); (M.D.); (E.K.); (A.N.); (V.F.); (S.V.P.); (G.S.)
- V.L. Talrose Institute for Energy Problems of Chemical Physics, Russia Academy of Sciences, 119991 Moscow, Russia
| | - Anastasia Novoselova
- National Medical Research Center for Obstetrics Gynecology and Perinatology Named after Academician V.I. Kulakov of the Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (N.S.); (A.T.); (M.D.); (E.K.); (A.N.); (V.F.); (S.V.P.); (G.S.)
| | - Vladimir Frankevich
- National Medical Research Center for Obstetrics Gynecology and Perinatology Named after Academician V.I. Kulakov of the Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (N.S.); (A.T.); (M.D.); (E.K.); (A.N.); (V.F.); (S.V.P.); (G.S.)
- Laboratory of Translational Medicine, Siberian State Medical University, 634050 Tomsk, Russia
| | - Stanislav V. Pavlovich
- National Medical Research Center for Obstetrics Gynecology and Perinatology Named after Academician V.I. Kulakov of the Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (N.S.); (A.T.); (M.D.); (E.K.); (A.N.); (V.F.); (S.V.P.); (G.S.)
- Department of Obstetrics, Gynecology, Perinatology and Reproductology, Institute of Professional Education, Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, 119991 Moscow, Russia
| | - Gennady Sukhikh
- National Medical Research Center for Obstetrics Gynecology and Perinatology Named after Academician V.I. Kulakov of the Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (N.S.); (A.T.); (M.D.); (E.K.); (A.N.); (V.F.); (S.V.P.); (G.S.)
- Department of Obstetrics, Gynecology, Perinatology and Reproductology, Institute of Professional Education, Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, 119991 Moscow, Russia
| |
Collapse
|
35
|
Hering M, Madi A, Sandhoff R, Ma S, Wu J, Mieg A, Richter K, Mohr K, Knabe N, Stichling D, Poschet G, Bestvater F, Frank L, Utikal J, Umansky V, Cui G. Sphinganine recruits TLR4 adaptors in macrophages and promotes inflammation in murine models of sepsis and melanoma. Nat Commun 2024; 15:6067. [PMID: 39025856 PMCID: PMC11258287 DOI: 10.1038/s41467-024-50341-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 07/08/2024] [Indexed: 07/20/2024] Open
Abstract
After recognizing its ligand lipopolysaccharide, Toll-like receptor 4 (TLR4) recruits adaptor proteins to the cell membrane, thereby initiating downstream signaling and triggering inflammation. Whether this recruitment of adaptor proteins is dependent solely on protein-protein interactions is unknown. Here, we report that the sphingolipid sphinganine physically interacts with the adaptor proteins MyD88 and TIRAP and promotes MyD88 recruitment in macrophages. Myeloid cell-specific deficiency in serine palmitoyltransferase long chain base subunit 2, which encodes the key enzyme catalyzing sphingolipid biosynthesis, decreases the membrane recruitment of MyD88 and inhibits inflammatory responses in in vitro bone marrow-derived macrophage and in vivo sepsis models. In a melanoma mouse model, serine palmitoyltransferase long chain base subunit 2 deficiency decreases anti-tumor myeloid cell responses and increases tumor growth. Therefore, sphinganine biosynthesis is required for the initiation of TLR4 signal transduction and serves as a checkpoint for macrophage pattern recognition in sepsis and melanoma mouse models.
Collapse
Affiliation(s)
- Marvin Hering
- T Cell Metabolism Group (D192), German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany.
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim (UMM), Ruprecht-Karls University of Heidelberg, Mannheim, Germany.
- DKFZ Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany.
| | - Alaa Madi
- T Cell Metabolism Group (D192), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Roger Sandhoff
- Lipid Pathobiochemistry Group (A411), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sicong Ma
- T Cell Metabolism Group (D192), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, 230601, China
| | - Jingxia Wu
- T Cell Metabolism Group (D192), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, 230601, China
| | - Alessa Mieg
- T Cell Metabolism Group (D192), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Karsten Richter
- Electron Microscopy Core Facility (W230), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kerstin Mohr
- T Cell Metabolism Group (D192), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nora Knabe
- T Cell Metabolism Group (D192), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Helmholtz Institute for Translational Oncology, Mainz (HI-TRON Mainz)-A Helmholtz Institute of the DKFZ, Mainz, Germany
| | - Diana Stichling
- T Cell Metabolism Group (D192), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Gernot Poschet
- Metabolomics Core Technology Platform, Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Felix Bestvater
- Light Microscopy Core Facility (W210), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Larissa Frank
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
- Division of Cellular Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jochen Utikal
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim (UMM), Ruprecht-Karls University of Heidelberg, Mannheim, Germany
- DKFZ Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany
| | - Viktor Umansky
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim (UMM), Ruprecht-Karls University of Heidelberg, Mannheim, Germany
- DKFZ Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany
- Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Guoliang Cui
- T Cell Metabolism Group (D192), German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany.
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, 230601, China.
- Helmholtz Institute for Translational Oncology, Mainz (HI-TRON Mainz)-A Helmholtz Institute of the DKFZ, Mainz, Germany.
- Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
36
|
Rui X, Okamoto Y, Fukushima S, Morishita Watanabe N, Umakoshi H. Investigating the impact of 2-OHOA-embedded liposomes on biophysical properties of cancer cell membranes via Laurdan two-photon microscopy imaging. Sci Rep 2024; 14:15831. [PMID: 38982188 PMCID: PMC11233574 DOI: 10.1038/s41598-024-65812-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 06/24/2024] [Indexed: 07/11/2024] Open
Abstract
2-Hydroxyoleic acid (2-OHOA) has gained attention as a membrane lipid therapy (MLT) anti-cancer drug. However, in the viewpoint of anti-cancer drug, 2-OHOA shows poor water solubility and its effectiveness still has space for improvement. Thus, this study aimed to overcome the problems by formulating 2-OHOA into liposome dosage form. Furthermore, in the context of MLT reagents, the influence of 2-OHOA on the biophysical properties of the cytoplasmic membrane remains largely unexplored. To bridge this gap, our study specifically focused the alterations in cancer cell membrane fluidity and lipid packing characteristics before and after treatment. By using a two-photon microscope and the Laurdan fluorescence probe, we noted that liposomes incorporating 2-OHOA induced a more significant reduction in cancer cell membrane fluidity, accompanied by a heightened rate of cellular apoptosis when compared to the non-formulated 2-OHOA. Importantly, the enhanced efficacy of 2-OHOA within the liposomal formulation demonstrated a correlation with its endocytic uptake mechanism. In conclusion, our findings underscore the significant influence of 2-OHOA on the biophysical properties of cancer plasma membranes, emphasizing the potential of liposomes as an optimized delivery system for 2-OHOA in anti-cancer therapy.
Collapse
Affiliation(s)
- Xuehui Rui
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyamacho, Toyonaka, Osaka, 560-8531, Japan.
| | - Yukihiro Okamoto
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyamacho, Toyonaka, Osaka, 560-8531, Japan
| | - Shuichiro Fukushima
- Department of Mechanical Science and Bioengineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyamacho, Toyonaka, Osaka, 560-8531, Japan
| | - Nozomi Morishita Watanabe
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyamacho, Toyonaka, Osaka, 560-8531, Japan
| | - Hiroshi Umakoshi
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyamacho, Toyonaka, Osaka, 560-8531, Japan.
| |
Collapse
|
37
|
Moseholm KF, Cronjé HT, Koch M, Fitzpatrick AL, Lopez OL, Otto MCDO, Longstreth WT, Hoofnagle AN, Mukamal KJ, Lemaitre RN, Jensen MK. Circulating sphingolipids in relation to cognitive decline and incident dementia: The Cardiovascular Health Study. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2024; 16:e12623. [PMID: 39130802 PMCID: PMC11310412 DOI: 10.1002/dad2.12623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/21/2024] [Accepted: 06/22/2024] [Indexed: 08/13/2024]
Abstract
INTRODUCTION Whether circulating levels of sphingolipids are prospectively associated with cognitive decline and dementia risk is uncertain. METHODS We measured 14 sphingolipid species in plasma samples from 4488 participants (mean age 76.2 years; 40% male; and 25% apolipoprotein E (APOE) ε4 allele carriers). Cognitive decline was assessed annually across 6 years using modified Mini-Mental State Examination (3MSE) and Digital Symbol Substitution Test (DSST). Additionally, a subset of 3050 participants were followed for clinically adjudicated dementia. RESULTS Higher plasma levels of sphingomyelin-d18:1/16:0 (SM-16) were associated with a faster cognitive decline measured with 3MSE, in contrast, higher levels of sphingomyelin-d18:1/22:0 (SM-22) were associated with slower decline in cognition measured with DSST. In Cox regression, higher levels of SM-16 (hazard ration [HR] = 1.24 [95% confidence interval [CI]: 1.08-1.44]) and ceramide-d18:1/16:0 (Cer-16) (HR = 1.26 [95% CI: 1.10-1.45]) were associated with higher risk of incident dementia. DISCUSSION Several sphingolipid species appear to be involved in cognitive decline and dementia risk. Highlights Plasma levels of sphingolipids were associated with cognitive decline and dementia risk.Ceramides and sphingomyelins with palmitic acid were associated with faster annual cognitive decline and increased risk of dementia.The direction of association depended on the covalently bound saturated fatty acid chain length in analysis of cognitive decline.
Collapse
Affiliation(s)
- Kristine F. Moseholm
- Department of Public HealthSection of EpidemiologyUniversity of CopenhagenCopenhagenDenmark
| | - Héléne T. Cronjé
- Department of Public HealthSection of EpidemiologyUniversity of CopenhagenCopenhagenDenmark
| | - Manja Koch
- Department of NutritionHarvard T.H. Chan School of Public HealthBostonMassachusettsUSA
| | - Annette L. Fitzpatrick
- Departments of Family Medicine and EpidemiologySchool of Public HealthUniversity of WashingtonSeattleWashingtonUSA
| | - Oscar L. Lopez
- Department of NeurologySchool of MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
| | | | - W. T. Longstreth
- Departments of Family Medicine and EpidemiologySchool of Public HealthUniversity of WashingtonSeattleWashingtonUSA
- Department of NeurologySchool of MedicineUniversity of WashingtonSeattleWashingtonUSA
| | - Andrew N. Hoofnagle
- Department of Laboratory Medicine and PathologySchool of MedicineUniversity of WashingtonSeattleWashingtonUSA
| | - Kenneth J. Mukamal
- Department of MedicineBeth Israel Deaconess Medical CenterBostonMassachusettsUSA
| | - Rozenn N. Lemaitre
- Cardiovascular Health Research Unit, Department of MedicineUniversity of WashingtonSeattleWashingtonUSA
| | - Majken K. Jensen
- Department of Public HealthSection of EpidemiologyUniversity of CopenhagenCopenhagenDenmark
- Department of NutritionHarvard T.H. Chan School of Public HealthBostonMassachusettsUSA
| |
Collapse
|
38
|
Ye Y, Xia C, Hu H, Tang S, Huan H. Metabolomics reveals altered metabolites in cirrhotic patients with severe portal hypertension in Tibetan population. Front Med (Lausanne) 2024; 11:1404442. [PMID: 39015788 PMCID: PMC11250582 DOI: 10.3389/fmed.2024.1404442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/17/2024] [Indexed: 07/18/2024] Open
Abstract
Background Portal hypertension (PHT) presents a challenging issue of liver cirrhosis. This study aims to identify novel biomarkers for severe PHT (SPHT) and explore the pathophysiological mechanisms underlying PHT progression. Methods Twenty-three Tibetan cirrhotic patients who underwent hepatic venous pressure gradient (HVPG) measurement were included. Eleven patients had an HVPG between 5 mmHg and 15 mmHg (MPHT), while 12 had an HVPG ≥16 mmHg (SPHT). Peripheral sera were analyzed using liquid chromatograph-mass spectrometer for metabolomic assessment. An additional 14 patients were recruited for validation of metabolites. Results Seven hundred forty-five metabolites were detected and significant differences in metabolomics between MPHT and SPHT patients were observed. Employing a threshold of p < 0.05 and a variable importance in projection score >1, 153 differential metabolites were identified. A significant number of these metabolites were lipids and lipid-like molecules. Pisumionoside and N-decanoylglycine (N-DG) exhibited the highest area under the curve (AUC) values (0.947 and 0.9091, respectively). Additional differential metabolites with AUC >0.8 included 6-(4-ethyl-2-methoxyphenoxy)-3,4,5-trihydroxyoxane-2-carboxylic acid, sphinganine 1-phosphate, 4-hydroxytriazolam, 4,5-dihydroorotic acid, 6-hydroxy-1H-indole-3-acetamide, 7alpha-(thiomethyl)spironolactone, 6-deoxohomodolichosterone, glutaminylisoleucine, taurocholic acid 3-sulfate, and Phe Ser. Enzyme-linked immunosorbent assay further confirmed elevated levels of sphinganine 1-phosphate, N-DG, and serotonin in SPHT patients. Significant disruptions in linoleic acid, amino acid, sphingolipid metabolisms, and the citrate cycle were observed in SPHT patients. Conclusion Pisumionoside and N-DG are identified as promising biomarkers for SPHT. The progression of PHT may be associated with disturbances in lipid, linoleic acid, and amino acid metabolisms, as well as alterations in the citrate cycle.
Collapse
Affiliation(s)
- Yanting Ye
- Lab of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, China
| | - Chao Xia
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
- Huaxi MR Research Center (HMRRC), West China Hospital, Sichuan University, Chengdu, China
| | - Hong Hu
- Department of Gastroenterology, Hospital of Chengdu Office of People’s Government of Tibetan Autonomous Region, Chengdu, China
| | - Shihang Tang
- Department of Gastroenterology, Chongqing University Cancer Hospital, Chongqing, China
| | - Hui Huan
- Department of Gastroenterology, Hospital of Chengdu Office of People’s Government of Tibetan Autonomous Region, Chengdu, China
| |
Collapse
|
39
|
Li C, Liu Z, Wei W, Chen C, Zhang L, Wang Y, Zhou B, Liu L, Li X, Zhao C. Exploring the Regulatory Effect of LPJZ-658 on Copper Deficiency Combined with Sugar-Induced MASLD in Middle-Aged Mice Based on Multi-Omics Analysis. Nutrients 2024; 16:2010. [PMID: 38999758 PMCID: PMC11243161 DOI: 10.3390/nu16132010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/14/2024] [Accepted: 06/15/2024] [Indexed: 07/14/2024] Open
Abstract
Globally, metabolic dysfunction-associated steatotic liver disease (MASLD), previously termed nonalcoholic fatty liver disease (NAFLD), is one of the most common liver disorders and is strongly associated with copper deficiency. To explore the potential effects and mechanisms of Lactiplantibacillus plantarum LPJZ-658, copper deficiency combined with a high-sugar diet-induced MASLD mouse model was utilized in this study. We fed 40-week-old (middle-aged) male C57BL/6 mice a copper-deficient and high-sugar diet for 16 weeks (CuDS), with supplementary LPJZ-658 for the last 6 weeks (CuDS + LPJZ-658). In this study, we measured body weight, liver weight, and serum biochemical markers. Lipid accumulation, histology, lipidomics, and sphingolipid metabolism-related enzyme expression were investigated to analyze liver function. Untargeted metabolomics was used to analyze the serum and the composition and abundance of intestinal flora. In addition, the correlation between differential liver lipid profiles, serum metabolites, and gut flora at the genus level was measured. The results show that LPJZ-658 significantly improves abnormal liver function and hepatic steatosis. The lipidomics analyses and metabolic pathway analysis identified sphingolipid, retinol, and glycerophospholipid metabolism as the most relevant metabolic pathways that characterized liver lipid dysregulation in the CuDS group. Consistently, RT-qPCR analyses revealed that the enzymes catalyzing sphingolipid metabolism that were significantly upregulated in the CuDS group were downregulated by the LPJZ-658 treatment. In addition, the serum metabolomics results indicated that the linoleic acid, taurine and hypotaurine, and ascorbate and aldarate metabolism pathways were associated with CuDS-induced MASLD. Notably, we found that treatment with LPJZ-658 partially reversed the changes in the differential serum metabolites. Finally, LPJZ-658 effectively regulated intestinal flora abnormalities and was significantly correlated with differential hepatic lipid species and serum metabolites. In conclusion, we elucidated the function and potential mechanisms of LPJZ-658 in alleviating copper deficiency combined with sugar-induced middle-aged MASLD and hope this will provide possible treatment strategies for improving MASLD.
Collapse
Affiliation(s)
- Chunhua Li
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin City 132101, China; (C.L.); (Z.L.); (C.C.); (L.Z.); (L.L.)
| | - Ziqi Liu
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin City 132101, China; (C.L.); (Z.L.); (C.C.); (L.Z.); (L.L.)
| | - Wei Wei
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China;
| | - Chen Chen
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin City 132101, China; (C.L.); (Z.L.); (C.C.); (L.Z.); (L.L.)
| | - Lichun Zhang
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin City 132101, China; (C.L.); (Z.L.); (C.C.); (L.Z.); (L.L.)
| | - Yang Wang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China;
| | - Bo Zhou
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Changchun Veterinary Research Institute, Chinese Academy of Medical Sciences, Changchun 130122, China;
| | - Liming Liu
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin City 132101, China; (C.L.); (Z.L.); (C.C.); (L.Z.); (L.L.)
| | - Xiao Li
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Changchun Veterinary Research Institute, Chinese Academy of Medical Sciences, Changchun 130122, China;
- Academician Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Cuiqing Zhao
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin City 132101, China; (C.L.); (Z.L.); (C.C.); (L.Z.); (L.L.)
| |
Collapse
|
40
|
Ramos-Molina B, Rossell J, Pérez-Montes de Oca A, Pardina E, Genua I, Rojo-López MI, Julián MT, Alonso N, Julve J, Mauricio D. Therapeutic implications for sphingolipid metabolism in metabolic dysfunction-associated steatohepatitis. Front Endocrinol (Lausanne) 2024; 15:1400961. [PMID: 38962680 PMCID: PMC11220194 DOI: 10.3389/fendo.2024.1400961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/03/2024] [Indexed: 07/05/2024] Open
Abstract
The prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD), a leading cause of chronic liver disease, has increased worldwide along with the epidemics of obesity and related dysmetabolic conditions characterized by impaired glucose metabolism and insulin signaling, such as type 2 diabetes mellitus (T2D). MASLD can be defined as an excessive accumulation of lipid droplets in hepatocytes that occurs when the hepatic lipid metabolism is totally surpassed. This metabolic lipid inflexibility constitutes a central node in the pathogenesis of MASLD and is frequently linked to the overproduction of lipotoxic species, increased cellular stress, and mitochondrial dysfunction. A compelling body of evidence suggests that the accumulation of lipid species derived from sphingolipid metabolism, such as ceramides, contributes significantly to the structural and functional tissue damage observed in more severe grades of MASLD by triggering inflammatory and fibrogenic mechanisms. In this context, MASLD can further progress to metabolic dysfunction-associated steatohepatitis (MASH), which represents the advanced form of MASLD, and hepatic fibrosis. In this review, we discuss the role of sphingolipid species as drivers of MASH and the mechanisms involved in the disease. In addition, given the absence of approved therapies and the limited options for treating MASH, we discuss the feasibility of therapeutic strategies to protect against MASH and other severe manifestations by modulating sphingolipid metabolism.
Collapse
Affiliation(s)
- Bruno Ramos-Molina
- Group of Obesity, Diabetes & Metabolism, Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia, Spain
| | - Joana Rossell
- Group of Endocrinology, Diabetes & Nutrition, Institut de Recerca SANT PAU, Barcelona, Spain
- Centro de Investigación Biomédica en Red (CIBER) de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Madrid, Spain
| | | | - Eva Pardina
- Department de Biochemistry & Molecular Biology, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain
| | - Idoia Genua
- Department of Endocrinology & Nutrition, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Marina I. Rojo-López
- Group of Endocrinology, Diabetes & Nutrition, Institut de Recerca SANT PAU, Barcelona, Spain
| | - María Teresa Julián
- Department of Endocrinology & Nutrition, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Núria Alonso
- Centro de Investigación Biomédica en Red (CIBER) de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Madrid, Spain
- Department of Endocrinology & Nutrition, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Josep Julve
- Group of Endocrinology, Diabetes & Nutrition, Institut de Recerca SANT PAU, Barcelona, Spain
- Centro de Investigación Biomédica en Red (CIBER) de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Madrid, Spain
| | - Didac Mauricio
- Group of Endocrinology, Diabetes & Nutrition, Institut de Recerca SANT PAU, Barcelona, Spain
- Centro de Investigación Biomédica en Red (CIBER) de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Madrid, Spain
- Department of Endocrinology & Nutrition, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
- Department of Endocrinology & Nutrition, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Faculty of Medicine, University of Vic/Central University of Catalonia (UVIC/UCC), Vic, Spain
| |
Collapse
|
41
|
Brahmachary P, Erdogan E, Myers E, June RK. Metabolomic Profiling and Characterization of a Novel 3D Culture System for Studying Chondrocyte Mechanotransduction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.10.598340. [PMID: 38915493 PMCID: PMC11195103 DOI: 10.1101/2024.06.10.598340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Articular chondrocytes synthesize and maintain the avascular and aneural articular cartilage. In vivo these cells are surrounded by a 3D pericellular matrix (PCM) containing predominantly collagen VI. The PCM protects chondrocytes and facilitates mechanotransduction, and PCM stiffness is critical in transmitting biomechanical signals to chondrocytes. Various culture systems with different hydrogels have been used to encapsulate chondrocytes for 3D culture, but many lack either the PCM or the in vivo stiffness of the cartilage matrix. Here, we demonstrate that primary chondrocytes cultured in alginate will form a pericellular matrix and display a phenotype similar to in vivo conditions. We found that primary human and bovine chondrocytes, when cultured in alginate beads with addition of sodium L-ascorbate for 7 days, had a pronounced PCM, retained their phenotype, and synthesized both collagens VI and II. This novel culture system enables alginate-encapsulated chondrocytes to develop a robust PCM thereby creating a model system to study mechanotransduction. We also observed distinct compression-induced changes in metabolomic profiles between the monolayer-agarose and alginate-released agarose-embedded chondrocytes indicating physiological changes in cell metabolism. Our data suggest that 3D preculture of chondrocytes in alginate before encapsulation in physiologically-stiff agarose leads to a pronounced development of pericellular matrix that is sustained in the presence of ascorbate. This novel model can be useful in studying the mechanism by which chondrocytes respond to cyclical compression and other types of loading simulating in vivo physiological conditions.
Collapse
Affiliation(s)
- Priyanka Brahmachary
- Department of Mechanical & Industrial Engineering, Montana State University, Bozeman, MT 59717
| | - Ebru Erdogan
- Department of Mechanical & Industrial Engineering, Montana State University, Bozeman, MT 59717
| | - Erik Myers
- Department of Mechanical & Industrial Engineering, Montana State University, Bozeman, MT 59717
| | - Ronald K June
- Department of Mechanical & Industrial Engineering, Montana State University, Bozeman, MT 59717
- Department of Microbiology & Cell Biology, Montana State University, Bozeman, MT 59717
| |
Collapse
|
42
|
Sundaraswamy PM, Minami Y, Jayaprakash J, B Gowda SG, Takatsu H, Gowda D, Shin HW, Hui SP. A facile method for monitoring sphingomyelin synthase activity in HeLa cells using liquid chromatography/mass spectrometry. Analyst 2024; 149:3293-3301. [PMID: 38713069 DOI: 10.1039/d4an00304g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Sphingomyelin synthase (SMS) is a sphingolipid-metabolizing enzyme involved in the de novo synthesis of sphingomyelin (SM) from ceramide (Cer). Recent studies have indicated that SMS is a key therapeutic target for metabolic diseases such as fatty liver, type 2 diabetes, atherosclerosis, and colorectal cancer. However, very few SMS inhibitors have been identified because of the limited sensitivity and selectivity of the current fluorescence-based screening assay. In this study, we developed a simple cell-based assay coupled with liquid chromatography/tandem mass spectrometry (LC-MS/MS) to screen for SMS inhibitors. HeLa cells stably expressing SMS1 or SMS2 were used for the screening. A non-fluorescent unnatural C6-Cer was used as a substrate for SMS to produce C6-SM. C6-Cer and C6-SM levels in the cells were monitored and quantified using LC-MS/MS. The activity of ginkgolic acid C15:1 (GA), a known SMS inhibitor, was measured. GA had half-maximal inhibitory concentrations of 5.5 μM and 3.6 μM for SMS1 and SMS2, respectively. To validate these findings, hSMS1 and hSMS2 proteins were optimized for molecular docking studies. In silico analyses were conducted to assess the interaction of GA with SMS1 and SMS2, and its binding affinity. This study offers an analytical approach for screening novel SMS inhibitors and provides in silico support for the experimental findings.
Collapse
Affiliation(s)
- Punith M Sundaraswamy
- Graduate School of Global Food Resources, Hokkaido University, Kita-9, Nishi-9, Kita-Ku, Sapporo 060-0809, Japan.
| | - Yusuke Minami
- Graduate School of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo 060-0812, Japan
| | - Jayashankar Jayaprakash
- Graduate School of Global Food Resources, Hokkaido University, Kita-9, Nishi-9, Kita-Ku, Sapporo 060-0809, Japan.
| | - Siddabasave Gowda B Gowda
- Graduate School of Global Food Resources, Hokkaido University, Kita-9, Nishi-9, Kita-Ku, Sapporo 060-0809, Japan.
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo 060-0812, Japan.
| | - Hiroyuki Takatsu
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Divyavani Gowda
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo 060-0812, Japan.
| | - Hye-Won Shin
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Shu-Ping Hui
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo 060-0812, Japan.
| |
Collapse
|
43
|
Galatolo D, Rocchiccioli S, Di Giorgi N, Dal Canto F, Signore G, Morani F, Ceccherini E, Doccini S, Santorelli FM. Proteomics and lipidomic analysis reveal dysregulated pathways associated with loss of sacsin. Front Neurosci 2024; 18:1375299. [PMID: 38911600 PMCID: PMC11191878 DOI: 10.3389/fnins.2024.1375299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/20/2024] [Indexed: 06/25/2024] Open
Abstract
Introduction Autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is a rare incurable neurodegenerative disease caused by mutations in the SACS gene, which codes for sacsin, a large protein involved in protein homeostasis, mitochondrial function, cytoskeletal dynamics, autophagy, cell adhesion and vesicle trafficking. However, the pathogenic mechanisms underlying sacsin dysfunction are still largely uncharacterized, and so attempts to develop therapies are still in the early stages. Methods To achieve further understanding of how processes are altered by loss of sacsin, we used untargeted proteomics to compare protein profiles in ARSACS fibroblasts versus controls. Results Our analyses confirmed the involvement of known biological pathways and also implicated calcium and lipid homeostasis in ARSACS skin fibroblasts, a finding further verified in SH-SY5Y SACS -/- cells. Validation through mass spectrometry-based analysis and comparative quantification of lipids by LC-MS in fibroblasts revealed increased levels of ceramides coupled with a reduction of diacylglycerols. Discussion In addition to confirming aberrant Ca2+ homeostasis in ARSACS, this study described abnormal lipid levels associated with loss of sacsin.
Collapse
Affiliation(s)
| | | | | | | | - Giovanni Signore
- Institute of Clinical Physiology, National Research Council, Pisa, Italy
- Department of Biology, University of Pisa, Pisa, Italy
| | - Federica Morani
- The BioRobotics Institute, Scuola Superiore Sant’Anna, Pisa, Italy
| | - Elisa Ceccherini
- Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | - Stefano Doccini
- Molecular Medicine, IRCCS Stella Maris Foundation, Pisa, Italy
| | | |
Collapse
|
44
|
Tolerico M, Merscher S, Fornoni A. Normal and Dysregulated Sphingolipid Metabolism: Contributions to Podocyte Injury and Beyond. Cells 2024; 13:890. [PMID: 38891023 PMCID: PMC11171506 DOI: 10.3390/cells13110890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/09/2024] [Accepted: 05/16/2024] [Indexed: 06/20/2024] Open
Abstract
Podocyte health is vital for maintaining proper glomerular filtration in the kidney. Interdigitating foot processes from podocytes form slit diaphragms which regulate the filtration of molecules through size and charge selectivity. The abundance of lipid rafts, which are ordered membrane domains rich in cholesterol and sphingolipids, near the slit diaphragm highlights the importance of lipid metabolism in podocyte health. Emerging research shows the importance of sphingolipid metabolism to podocyte health through structural and signaling roles. Dysregulation in sphingolipid metabolism has been shown to cause podocyte injury and drive glomerular disease progression. In this review, we discuss the structure and metabolism of sphingolipids, as well as their role in proper podocyte function and how alterations in sphingolipid metabolism contributes to podocyte injury and drives glomerular disease progression.
Collapse
Affiliation(s)
| | - Sandra Merscher
- Peggy and Harold Katz Family Drug Discovery Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
| | - Alessia Fornoni
- Peggy and Harold Katz Family Drug Discovery Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
| |
Collapse
|
45
|
Han Y, Ling S, Hu S, Shen G, Zhang H, Zhang W. Combined exposure to decabromodiphenyl ether and nano zero-valent iron aggravated oxidative stress and interfered with metabolism in earthworms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:172033. [PMID: 38547968 DOI: 10.1016/j.scitotenv.2024.172033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/23/2024] [Accepted: 03/25/2024] [Indexed: 04/02/2024]
Abstract
Decabromodiphenyl ether (BDE-209) is a common brominated flame retardant in electronic waste, and nano zero-valent iron (nZVI) is a new material in the field of environmental remediation. Little is known about how BDE-209 and nZVI combined exposure influences soil organisms. During the 28 days study, we determined the effects of single and combined exposures to BDE-209 and nZVI on the oxidative stress and metabolic response of earthworms (Eisenia fetida). On day 7, compared to CK, malondialdehyde (MDA) content increased in most combined exposure groups. To remove MDA and reactive oxygen species (ROS), superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) activities were induced in most combined exposure groups. On day 28, compared to CK, the activities of SOD and CAT were inhibited, while POD activity was significantly induced, indicating that POD plays an important role in scavenging ROS. Combined exposure to BDE-209 and nZVI significantly affected amino acid biosynthesis and metabolism, purine metabolism, and aminoacyl-tRNA biosynthesis pathways, interfered with energy metabolism, and aggravated oxidative stress in earthworms. These findings provide a basis for assessing the ecological impacts of using nZVI to remediate soils contaminated with BDE-209 from electronic waste.
Collapse
Affiliation(s)
- Ying Han
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Siyuan Ling
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Shuangqing Hu
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Academy of Environmental Sciences, Shanghai 200233, China.
| | - Genxiang Shen
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Hongchang Zhang
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Wei Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
46
|
Sztolsztener K, Chabowski A. Hepatic-Metabolic Activity of α-Lipoic Acid-Its Influence on Sphingolipid Metabolism and PI3K/Akt/mTOR Pathway in a Rat Model of Metabolic Dysfunction-Associated Steatotic Liver Disease. Nutrients 2024; 16:1501. [PMID: 38794739 PMCID: PMC11124255 DOI: 10.3390/nu16101501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/13/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Excessive lipid deposition affects hepatic homeostasis and contributes to the development of insulin resistance as a crucial factor for the deterioration of simple steatosis to steatohepatitis. So, it is essential to search for an effective agent for a new therapy for hepatic steatosis development before it progresses to the more advanced stages. Our study aimed to evaluate the potential protective effect of α-lipoic acid (α-LA) administration on the intrahepatic metabolism of sphingolipid and insulin signaling transduction in rats with metabolic dysfunction-associated steatotic liver disease (MASLD). The experiment was conducted on male Wistar rats subjected to a standard diet or a high-fat diet (HFD) and an intragastrically α-LA administration for eight weeks. High-performance liquid chromatography (HPLC) was used to determine sphingolipid content. Immunoblotting was used to measure the expression of selected proteins from sphingolipid and insulin signaling pathways. Multiplex assay kit was used to assess the level of the phosphorylated form of proteins from PI3K/Akt/mTOR transduction. The results revealed that α-LA decreased sphinganine, dihydroceramide, and sphingosine levels and increased ceramide level. We also observed an increased the concentration of phosphorylated forms of sphingosine and sphinganine. Changes in the expression of proteins from sphingolipid metabolism were consistent with changes in sphingolipid pools. Treatment with α-LA activated the PI3K/Akt/mTOR pathway, which enhanced the hepatic phosphorylation of Akt and mTOR. Based on these data, we concluded that α-lipoic acid may alleviate glucose intolerance and may have a protective influence on the sphingolipid metabolism under HFD; thus, this antioxidant appears to protect from MASLD development and steatosis deterioration.
Collapse
Affiliation(s)
- Klaudia Sztolsztener
- Department of Physiology, Medical University of Bialystok, Mickiewicz 2C Str., 15-222 Bialystok, Poland;
| | | |
Collapse
|
47
|
Moseholm KF, Horn JW, Fitzpatrick AL, Djoussé L, Longstreth WT, Lopez OL, Hoofnagle AN, Jensen MK, Lemaitre RN, Mukamal KJ. Circulating sphingolipids and subclinical brain pathology: the cardiovascular health study. Front Neurol 2024; 15:1385623. [PMID: 38765262 PMCID: PMC11099203 DOI: 10.3389/fneur.2024.1385623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/08/2024] [Indexed: 05/21/2024] Open
Abstract
Background Sphingolipids are implicated in neurodegeneration and neuroinflammation. We assessed the potential role of circulating ceramides and sphingomyelins in subclinical brain pathology by investigating their association with brain magnetic resonance imaging (MRI) measures and circulating biomarkers of brain injury, neurofilament light chain (NfL) and glial fibrillary acidic protein (GFAP) in the Cardiovascular Health Study (CHS), a large and intensively phenotyped cohort of older adults. Methods Brain MRI was offered twice to CHS participants with a mean of 5 years between scans, and results were available from both time points in 2,116 participants (mean age 76 years; 40% male; and 25% APOE ε4 allele carriers). We measured 8 ceramide and sphingomyelin species in plasma samples and examined the associations with several MRI, including worsening grades of white matter hyperintensities and ventricular size, number of brain infarcts, and measures of brain atrophy in a subset with quantitative measures. We also investigated the sphingolipid associations with serum NfL and GFAP. Results In the fully adjusted model, higher plasma levels of ceramides and sphingomyelins with a long (16-carbon) saturated fatty acid were associated with higher blood levels of NfL [β = 0.05, false-discovery rate corrected P (PFDR) = 0.004 and β = 0.06, PFDR = < 0.001, respectively]. In contrast, sphingomyelins with very long (20- and 22-carbon) saturated fatty acids tended to have an inverse association with levels of circulating NfL. In secondary analyses, we found an interaction between ceramide d18:1/20:0 and sex (P for interaction = <0.001), such that ceramide d18:1/20:0 associated with higher odds for infarcts in women [OR = 1.26 (95%CI: 1.07, 1.49), PFDR = 0.03]. We did not observe any associations with GFAP blood levels, white matter grade, ventricular grade, mean bilateral hippocampal volume, or total brain volume. Conclusion Overall, our comprehensive investigation supports the evidence that ceramides and sphingomyelins are associated with increased aging brain pathology and that the direction of association depends on the fatty acid attached to the sphingosine backbone.
Collapse
Affiliation(s)
- Kristine F. Moseholm
- Department of Public Health, Section of Epidemiology, University of Copenhagen, Copenhagen, Denmark
| | - Jens W. Horn
- Department of Internal Medicine, Levanger Hospital, Health Trust Nord-Trøndelag, Levanger, Norway
| | - Annette L. Fitzpatrick
- Departments of Family Medicine and Epidemiology, School of Public Health, University of Washington, Seattle, WA, United States
| | - Luc Djoussé
- Division of Aging, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - W. T. Longstreth
- Departments of Family Medicine and Epidemiology, School of Public Health, University of Washington, Seattle, WA, United States
- Department of Neurology, School of Medicine, University of Washington, Seattle, WA, United States
| | - Oscar L. Lopez
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Andrew N. Hoofnagle
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Seattle, WA, United States
| | - Majken K. Jensen
- Department of Public Health, Section of Epidemiology, University of Copenhagen, Copenhagen, Denmark
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Rozenn N. Lemaitre
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, United States
| | - Kenneth J. Mukamal
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, United States
| |
Collapse
|
48
|
Lee SY, Park YM, Yoo HJ, Hong SJ. Metabolomic pathways in food allergy. Pediatr Allergy Immunol 2024; 35:e14133. [PMID: 38727629 DOI: 10.1111/pai.14133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 07/12/2024]
Abstract
Food allergy (FA) is a widespread issue, affecting as many as 10% of the population. Over the past two to three decades, the prevalence of FA has been on the rise, particularly in industrialized and westernized countries. FA is a complex, multifactorial disease mediated by type 2 immune responses and involving environmental and genetic factors. However, the precise mechanisms remain inadequately understood. Metabolomics has the potential to identify disease endotypes, which could beneficially promote personalized prevention and treatment. A metabolome approach would facilitate the identification of surrogate metabolite markers reflecting the disease activity and prognosis. Here, we present a literature overview of recent metabolomic studies conducted on children with FA.
Collapse
Affiliation(s)
| | - Yoon Mee Park
- Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul, Korea
| | - Hyun Ju Yoo
- Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Soo-Jong Hong
- Department of Pediatrics, Childhood Respiratory Allergy Center, Humidifier Disinfectant Health Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
49
|
Uchendu CG, Guan Z, Klein EA. Spatial organization of bacterial sphingolipid synthesis enzymes. J Biol Chem 2024; 300:107276. [PMID: 38588805 PMCID: PMC11087976 DOI: 10.1016/j.jbc.2024.107276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/16/2024] [Accepted: 04/02/2024] [Indexed: 04/10/2024] Open
Abstract
Sphingolipids are produced by nearly all eukaryotes where they play significant roles in cellular processes such as cell growth, division, programmed cell death, angiogenesis, and inflammation. While it was previously believed that sphingolipids were quite rare among bacteria, bioinformatic analysis of the recently identified bacterial sphingolipid synthesis genes suggests that these lipids are likely to be produced by a wide range of microbial species. The sphingolipid synthesis pathway consists of three critical enzymes. Serine palmitoyltransferase catalyzes the condensation of serine with palmitoyl-CoA (or palmitoyl-acyl carrier protein), ceramide synthase adds the second acyl chain, and a reductase reduces the ketone present on the long-chain base. While there is general agreement regarding the identity of these bacterial enzymes, the precise mechanism and order of chemical reactions for microbial sphingolipid synthesis is more ambiguous. Two mechanisms have been proposed. First, the synthesis pathway may follow the well characterized eukaryotic pathway in which the long-chain base is reduced prior to the addition of the second acyl chain. Alternatively, our previous work suggests that addition of the second acyl chain precedes the reduction of the long-chain base. To distinguish between these two models, we investigated the subcellular localization of these three key enzymes. We found that serine palmitoyltransferase and ceramide synthase are localized to the cytoplasm, whereas the ceramide reductase is in the periplasmic space. This is consistent with our previously proposed model wherein the second acyl chain is added in the cytoplasm prior to export to the periplasm where the lipid molecule is reduced.
Collapse
Affiliation(s)
- Chioma G Uchendu
- Center for Computational and Integrative Biology, Rutgers University-Camden, Camden, New Jersey, USA
| | - Ziqiang Guan
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina, USA
| | - Eric A Klein
- Center for Computational and Integrative Biology, Rutgers University-Camden, Camden, New Jersey, USA; Biology Department, Rutgers University-Camden, Camden, New Jersey, USA; Rutgers Center for Lipid Research, Rutgers University, New Brunswick, New Jersey, USA.
| |
Collapse
|
50
|
Wajapeyee N, Beamon TC, Gupta R. Roles and therapeutic targeting of ceramide metabolism in cancer. Mol Metab 2024; 83:101936. [PMID: 38599378 PMCID: PMC11031839 DOI: 10.1016/j.molmet.2024.101936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/04/2024] [Accepted: 04/04/2024] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND Ceramides are sphingolipids that act as signaling molecules involved in regulating cellular processes including apoptosis, proliferation, and metabolism. Deregulation of ceramide metabolism contributes to cancer development and progression. Therefore, regulation of ceramide levels in cancer cells is being explored as a new approach for cancer therapy. SCOPE OF THE REVIEW This review discusses the multiple roles of ceramides in cancer cells and strategies to modulate ceramide levels for cancer therapy. Ceramides attenuate cell survival signaling and metabolic pathways, while activating apoptotic mechanisms, making them tumor-suppressive. Approaches to increase ceramide levels in cancer cells include using synthetic analogs, inhibiting ceramide degradation, and activating ceramide synthesis. We also highlight combination therapies such as use of ceramide modulators with chemotherapies, immunotherapies, apoptosis inducers, and anti-angiogenics, which offer synergistic antitumor effects. Additionally, we also describe ongoing clinical trials evaluating ceramide nanoliposomes and analogs. Finally, we discuss the challenges of these therapeutic approaches including the complexity of ceramide metabolism, targeted delivery, cancer heterogeneity, resistance mechanisms, and long-term safety. MAJOR CONCLUSIONS Ceramide-based therapy is a potentially promising approach for cancer therapy. However, overcoming hurdles in pharmacokinetics, specificity, and resistance is needed to optimize its efficacy and safety. This requires comprehensive preclinical/clinical studies into ceramide signaling, formulations, and combination therapies. Ceramide modulation offers opportunities for developing novel cancer treatments, but a deeper understanding of ceramide biology is vital to advance its clinical applications.
Collapse
Affiliation(s)
- Narendra Wajapeyee
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, 35233, USA; O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, 35233, USA.
| | - Teresa Chiyanne Beamon
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Romi Gupta
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, 35233, USA; O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, 35233, USA.
| |
Collapse
|