1
|
Liu XL, Zhang Q, Wang X, Liu YP, Ze LJ, Zhang HN, Lu M. Relish involved in immunity and larval survival in the willow leaf beetle Plagiodera versicolora. PEST MANAGEMENT SCIENCE 2024; 80:3808-3814. [PMID: 38507262 DOI: 10.1002/ps.8084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/07/2024] [Accepted: 03/20/2024] [Indexed: 03/22/2024]
Abstract
BACKGROUND Insects mainly rely on innate immunity against pathogen infection. Plagiodera versicolora (Coleoptera: Chrysomelidae), is a worldwide leaf-eating forest pest in salicaceous trees. However, the mechanisms behind the immunodeficiency pathway (IMD) remain poorly understood. RESULTS In this study, we obtained a Relish gene from transcriptome analysis. Tissue and instar expression profiles were subsequently obtained using quantitative real-time polymerase chain reaction analysis. The results showed that Relish has high expression levels in eggs, larvae and adults, and especially in fat bodies. Transcripts of the tested antimicrobial peptides (AMPs), defensin1, defensin2 and attacin2 were downregulated by dsRelish. Knockdown of Relish led to greater mortality in larvae after Staphylococcus aureus infection. In addition, we performed bacterial 16S ribosomal RNA-based high-throughput sequencing. The results showed that the relative abundance of some gut bacteria was significantly altered after dsRelish ingestion. CONCLUSION This study provides a greater understanding of the IMD signaling pathway, facilitating functional studies of Relish in P. versicolora. Moreover, a genetic pest management technique might be developed using Relish as a lethal gene to control the pest P. versicolora. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiao-Long Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Qi Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Xin Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Yi-Peng Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Long-Ji Ze
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing, China
| | - Hai-Nan Zhang
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Min Lu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| |
Collapse
|
2
|
Beauveria bassiana Ribotoxin (BbRib) Induces Silkworm Cell Apoptosis via Activating Ros Stress Response. Processes (Basel) 2021. [DOI: 10.3390/pr9081470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The BbRib gene participates in the infection process of Beauveria bassiana (B. bassiana). It also helps pathogenic fungi to escape and defeat the insect host immune defense system by regulating the innate immune response. However, model insects are rarely used to study the mechanism of fungal ribosomal toxin protein. In this study, BbRib protein was produced by prokaryotic expression and injected into silkworm (Bombyx mori) larvae. The physiological and biochemical indexes of silkworm were monitored, and the pathological effects of BbRib protein on immune tissues of silkworm were examined by Hematoxylin and Eosin (HE) staining. BbRib protein can significantly affect the growth and development of the silkworm, causing poisoning, destroying the midgut and fat body and producing physiological changes. The ROS stress response in the adipose tissue and cells of the silkworm was activated to induce apoptosis. These results indicated that the BbRib gene not only participates in the infection process of B. bassiana, it also helps the pathogenic fungi escape the immune system by regulating the innate immune system of the silkworm, allowing it to break through the silkworm’s immune defense. This study reveals the potential molecular mechanism of BbRib protein to insect toxicity, and provides a theoretical basis and material basis for the development and use of novel insecticidal toxins.
Collapse
|
3
|
Zhang C, Wickham JD, Zhao L, Sun J. A new bacteria-free strategy induced by MaGal2 facilitates pinewood nematode escape immune response from its vector beetle. INSECT SCIENCE 2021; 28:1087-1102. [PMID: 32443173 DOI: 10.1111/1744-7917.12823] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/24/2020] [Accepted: 05/04/2020] [Indexed: 05/17/2023]
Abstract
Symbiotic microbes play a crucial role in regulating parasite-host interactions; however, the role of bacterial associates in parasite-host interactions requires elucidation. In this study, we showed that, instead of introducing numerous symbiotic bacteria, dispersal of 4th-stage juvenile (JIV ) pinewood nematodes (PWNs), Bursaphelenchus xylophilus, only introduced few bacteria to its vector beetle, Monochamus alternatus (Ma). JIV showed weak binding ability to five dominant bacteria species isolated from the beetles' pupal chamber. This was especially the case for binding to the opportunistic pathogenic species Serratia marcescens; the nematodes' bacteria binding ability at this critical stage when it infiltrates Ma for dispersal was much weaker compared with Caenorhabditis elegans, Diplogasteroides asiaticus, and propagative-stage PWN. The associated bacterium S. marcescens, which was isolated from the beetles' pupal chambers, was unfavorable to Ma, because it caused a higher mortality rate upon injection into tracheae. In addition, S. marcescens in the tracheae caused more immune effector disorders compared with PWN alone. Ma_Galectin2 (MaGal2), a pattern-recognition receptor, was up-regulated following PWN loading. Recombinant MaGal2 protein formed aggregates with five dominant associated bacteria in vitro. Moreover, MaGal2 knockdown beetles had up-regulated prophenoloxidase gene expression, increased phenoloxidase activity, and decreased PWN loading. Our study revealed a previously unknown strategy for immune evasion of this plant pathogen inside its vector, and provides novel insights into the role of bacteria in parasite-host interactions.
Collapse
Affiliation(s)
- Chi Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Jacob D Wickham
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Lilin Zhao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Jianghua Sun
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
4
|
Mangano K, Vergalito F, Mammana S, Mariano A, De Pasquale R, Meloscia A, Bartollino S, Guerra G, Nicoletti F, Di Marco R. Evaluation of hyaluronic acid-P40 conjugated cream in a mouse model of dermatitis induced by oxazolone. Exp Ther Med 2017; 14:2439-2444. [PMID: 28962179 PMCID: PMC5609204 DOI: 10.3892/etm.2017.4810] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 01/06/2017] [Indexed: 01/07/2023] Open
Abstract
P40 is a particulate fraction or fragment isolated from Corynebacterium granulosum, which exhibits a wide spectrum of pharmacological functions including antitumor, antibacterial, phagocytic, antiviral and cytokine induction effects. In the present study, the immunomodulatory potential of P40-conjugated with hyaluronic acid was assessed in a mouse model of dermatitis induced by oxazolone. Oxazolone-induced allergic contact dermatitis is a T cell-mediated Th2-like hypersensitivity reaction, which mimics the corresponding reaction in humans. Female cluster of differentiation-1 mice were sensitized on days 0 and 1 by the application of 2% oxazolone onto a shaved back. The disease was induced by re-challenge on day 7 using 15% oxazolone in the inner and outer of the left ears of the mice. Mice were topically treated with hyaluronic acid-P40 conjugate cream or with placebo to the inner and outer surface of the left ear for 7 consecutive days starting from 1 h after the sensitization. A significant reduction in ear thickness and weight and in edema and leukocyte recruitment were observed in the mice treated with hyaluronic-P40 conjugate cream compared with mice treated with the cream base alone (P<0.05). Thus, P40-conjugated with hyaluronic acid may constitute an innovative dermatitis treatment.
Collapse
Affiliation(s)
- Katia Mangano
- Department of Biomedical and Biotechnological Sciences, University of Catania, I-95124 Catania, Italy
| | - Franca Vergalito
- Department of Medicine and Health Sciences, University of Molise, I-86100 Campobasso, Italy
| | - Santa Mammana
- Department of Biomedical and Biotechnological Sciences, University of Catania, I-95124 Catania, Italy
| | - Andrea Mariano
- Department of Medicine and Health Sciences, University of Molise, I-86100 Campobasso, Italy
| | - Rocco De Pasquale
- Department of Dermatology, Policlinico-Vittorio Emanuele Hospital, I-95124 Catania, Italy
| | - Antonia Meloscia
- Department of Medicine and Health Sciences, University of Molise, I-86100 Campobasso, Italy
| | - Silvia Bartollino
- Department of Medicine and Health Sciences, University of Molise, I-86100 Campobasso, Italy
| | - Germano Guerra
- Department of Medicine and Health Sciences, University of Molise, I-86100 Campobasso, Italy
| | - Ferdinando Nicoletti
- Department of Biomedical and Biotechnological Sciences, University of Catania, I-95124 Catania, Italy
| | - Roberto Di Marco
- Department of Medicine and Health Sciences, University of Molise, I-86100 Campobasso, Italy
| |
Collapse
|
5
|
Yang F, Wang Y, He Y, Jiang H. In search of a function of Manduca sexta hemolymph protease-1 in the innate immune system. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 76:1-10. [PMID: 27343384 PMCID: PMC5011066 DOI: 10.1016/j.ibmb.2016.06.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 06/15/2016] [Accepted: 06/21/2016] [Indexed: 05/24/2023]
Abstract
Extracellular serine protease cascades mediate immune signaling and responses in insects. In the tobacco hornworm Manduca sexta, nearly 30 serine proteases (SPs) and their homologs (SPHs) are cloned from hemocytes and fat body. Some of them participate in prophenoloxidase (proPO) activation and proSpätzle processing. Here we report the cDNA cloning of hemolymph protease-1b (HP1b), which is 90% identical and 95% similar to HP1a (formerly HP1). The HP1a and HP1b mRNA levels in hemocytes was down- and up-regulated after an immune challenge, respectively. Quantitative real-time polymerase chain reactions revealed their tissue-specific and development-dependent expression, mostly in hemocytes of the feeding larvae. We isolated HP1 precursor (proHP1) from larval hemolymph and observed micro-heterogeneity caused by N-linked glycosylation. Supplementation of the purified proHP1 to plasma samples from naïve larvae or induced ones injected with bacteria caused a small PO activity increase, much lower than those elicited by recombinant proHP1a/b, but no proteolytic cleavage was detected in the zymogens. Incubation of proHP1a/b or their catalytic domains with a cationic detergent, cetylpyridinium chloride, induced an amidase activity that hydrolyzed LDLH-p-nitroanilide. Since LDLH corresponds to the P4-P1 region before the proteolytic activation site of proHP6, we propose that the active but uncleaved proHP1 may cut proHP6 to generate HP6 that in turn activates proPAP1 and proHP8. The catalytic domain of HP1a/b, which by itself does not activate purified proHP6 or hydrolyze LDLH-p-nitroanilide, somehow generated active HP6, HP8, PAP1 and PO in plasma. Together, these results indicate that proHP1 participates in the proPO activation system, although detailed mechanism needs further exploration.
Collapse
Affiliation(s)
- Fan Yang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, United States
| | - Yang Wang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, United States
| | - Yan He
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, United States
| | - Haobo Jiang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, United States.
| |
Collapse
|
6
|
|
7
|
Earl SC, Rogers MT, Keen J, Bland DM, Houppert AS, Miller C, Temple I, Anderson DM, Marketon MM. Resistance to Innate Immunity Contributes to Colonization of the Insect Gut by Yersinia pestis. PLoS One 2015; 10:e0133318. [PMID: 26177454 PMCID: PMC4503695 DOI: 10.1371/journal.pone.0133318] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 06/25/2015] [Indexed: 01/29/2023] Open
Abstract
Yersinia pestis, the causative agent of bubonic and pneumonic plague, is typically a zoonotic vector-borne disease of wild rodents. Bacterial biofilm formation in the proventriculus of the flea contributes to chronic infection of fleas and facilitates efficient disease transmission. However prior to biofilm formation, ingested bacteria must survive within the flea midgut, and yet little is known about vector-pathogen interactions that are required for flea gut colonization. Here we establish a Drosophila melanogaster model system to gain insight into Y. pestis colonization of the insect vector. We show that Y. pestis establishes a stable infection in the anterior midgut of fly larvae, and we used this model system to study the roles of genes involved in biofilm production and/or resistance to gut immunity stressors. We find that PhoP and GmhA both contribute to colonization and resistance to antimicrobial peptides in flies, and furthermore, the data suggest biofilm formation may afford protection against antimicrobial peptides. Production of reactive oxygen species in the fly gut, as in fleas, also serves to limit bacterial infection, and OxyR mediates Y. pestis survival in both insect models. Overall, our data establish the fruit fly as an informative model to elucidate the relationship between Y. pestis and its flea vector.
Collapse
Affiliation(s)
- Shaun C. Earl
- Department of Biology, Indiana University, Bloomington, IN, United States of America
| | - Miles T. Rogers
- Department of Biology, Indiana University, Bloomington, IN, United States of America
| | - Jennifer Keen
- Department of Biology, Indiana University, Bloomington, IN, United States of America
| | - David M. Bland
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri, United States of America
| | - Andrew S. Houppert
- Department of Biology, Indiana University, Bloomington, IN, United States of America
| | - Caitlynn Miller
- Department of Biology, Indiana University, Bloomington, IN, United States of America
| | - Ian Temple
- Department of Biology, Indiana University, Bloomington, IN, United States of America
| | - Deborah M. Anderson
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri, United States of America
| | - Melanie M. Marketon
- Department of Biology, Indiana University, Bloomington, IN, United States of America
- * E-mail:
| |
Collapse
|
8
|
Molecular mechanisms of aging and immune system regulation in Drosophila. Int J Mol Sci 2012; 13:9826-9844. [PMID: 22949833 PMCID: PMC3431831 DOI: 10.3390/ijms13089826] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/25/2012] [Accepted: 07/30/2012] [Indexed: 12/04/2022] Open
Abstract
Aging is a complex process that involves the accumulation of deleterious changes resulting in overall decline in several vital functions, leading to the progressive deterioration in physiological condition of the organism and eventually causing disease and death. The immune system is the most important host-defense mechanism in humans and is also highly conserved in insects. Extensive research in vertebrates has concluded that aging of the immune function results in increased susceptibility to infectious disease and chronic inflammation. Over the years, interest has grown in studying the molecular interaction between aging and the immune response to pathogenic infections. The fruit fly Drosophila melanogaster is an excellent model system for dissecting the genetic and genomic basis of important biological processes, such as aging and the innate immune system, and deciphering parallel mechanisms in vertebrate animals. Here, we review the recent advances in the identification of key players modulating the relationship between molecular aging networks and immune signal transduction pathways in the fly. Understanding the details of the molecular events involved in aging and immune system regulation will potentially lead to the development of strategies for decreasing the impact of age-related diseases, thus improving human health and life span.
Collapse
|
9
|
Dishaw LJ, Haire RN, Litman GW. The amphioxus genome provides unique insight into the evolution of immunity. Brief Funct Genomics 2012; 11:167-76. [PMID: 22402506 DOI: 10.1093/bfgp/els007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Immune systems evolve as essential strategies to maintain homeostasis with the environment, prevent microbial assault and recycle damaged host tissues. The immune system is composed of two components, innate and adaptive immunity. The former is common to all animals while the latter consists of a vertebrate-specific system that relies on somatically derived lymphocytes and is associated with near limitless genetic diversity as well as long-term memory. Deuterostome invertebrates provide a view of immune repertoires in phyla that immediately predate the origins of vertebrates. Genomic studies in amphioxus, a cephalochordate, have revealed homologs of genes encoding most innate immune receptors found in vertebrates; however, many of the gene families have undergone dramatic expansions, greatly increasing the innate immune repertoire. In addition, domain-swapping accounts for the innovation of new predicted pathways of receptor function. In both amphioxus and Ciona, a urochordate, the VCBPs (variable region containing chitin-binding proteins), which consist of immunoglobulin V (variable) and chitin binding domains, mediate recognition through the V domains. The V domains of VCBPs in amphioxus exhibit high levels of allelic complexity that presumably relate to functional specificity. Various features of the amphioxus immune repertoire reflect novel selective pressures, which likely have resulted in innovative strategies. Functional genomic studies underscore the value of amphioxus as a model for studying innate immunity and may help reveal how unique relationships between innate immune receptors and both pathogens and symbionts factored in the evolution of adaptive immune systems.
Collapse
Affiliation(s)
- Larry J Dishaw
- Department of Pediatrics, University of South Florida, Children's Research Institute, USA
| | | | | |
Collapse
|