1
|
Takahashi TS, Da Cunha V, Krupovic M, Mayer C, Forterre P, Gadelle D. Expanding the type IIB DNA topoisomerase family: identification of new topoisomerase and topoisomerase-like proteins in mobile genetic elements. NAR Genom Bioinform 2019; 2:lqz021. [PMID: 33575570 PMCID: PMC7671362 DOI: 10.1093/nargab/lqz021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/12/2019] [Accepted: 12/06/2019] [Indexed: 12/13/2022] Open
Abstract
The control of DNA topology by DNA topoisomerases is essential for virtually all DNA transactions in the cell. These enzymes, present in every organism, exist as several non-homologous families. We previously identified a small group of atypical type IIB topoisomerases, called Topo VIII, mainly encoded by plasmids. Here, taking advantage of the rapid expansion of sequence databases, we identified new putative Topo VIII homologs. Our analyses confirm the exclusivity of the corresponding genes to mobile genetic elements (MGE) and extend their distribution to nine different bacterial phyla and one archaeal superphylum. Notably, we discovered another subfamily of topoisomerases, dubbed ‘Mini-A’, including distant homologs of type IIB topoisomerases and encoded by extrachromosomal and integrated bacterial and archaeal viruses. Interestingly, a short, functionally uncharacterized motif at the C-terminal extremity of type IIB topoisomerases appears sufficient to discriminate between Mini-A, Topo VI and Topo VIII subfamilies. This motif could be a key element for understanding the differences between the three subfamilies. Collectively, this work leads to an updated model for the origin and evolution of the type IIB topoisomerase family and raises questions regarding the role of topoisomerases during replication of MGE in bacteria and archaea.
Collapse
Affiliation(s)
- Tomio S Takahashi
- Institut de Biologie Intégrative de la Cellule, CNRS, Université Paris-Saclay, 91198 Gif sur Yvette Cedex, France.,Unité de Microbiologie Structurale, Institut Pasteur, CNRS, F-75015 Paris, France
| | - Violette Da Cunha
- Institut de Biologie Intégrative de la Cellule, CNRS, Université Paris-Saclay, 91198 Gif sur Yvette Cedex, France
| | - Mart Krupovic
- Institut Pasteur, Archaeal Virology Unit, Department of Microbiology, 75015 Paris, France
| | - Claudine Mayer
- Unité de Microbiologie Structurale, Institut Pasteur, CNRS, F-75015 Paris, France.,Université de Paris, Paris Diderot, F-75013 Paris, France
| | - Patrick Forterre
- Institut de Biologie Intégrative de la Cellule, CNRS, Université Paris-Saclay, 91198 Gif sur Yvette Cedex, France.,Institut Pasteur, F-75015 Paris, France
| | - Danièle Gadelle
- Institut de Biologie Intégrative de la Cellule, CNRS, Université Paris-Saclay, 91198 Gif sur Yvette Cedex, France
| |
Collapse
|
2
|
Abdel‐Aal MAA, Abdel‐Aziz SA, Shaykoon MSA, Abuo‐Rahma GEA. Towards anticancer fluoroquinolones: A review article. Arch Pharm (Weinheim) 2019; 352:e1800376. [DOI: 10.1002/ardp.201800376] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 03/18/2019] [Accepted: 03/21/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Mohamed A. A. Abdel‐Aal
- Department of Medicinal Chemistry, Faculty of PharmacyMinia UniversityMinia Egypt
- Department of Pharmaceutical Chemistry, Faculty of PharmacyAl‐Azhar UniversityAssiut Egypt
| | - Salah A. Abdel‐Aziz
- Department of Pharmaceutical Chemistry, Faculty of PharmacyAl‐Azhar UniversityAssiut Egypt
| | | | | |
Collapse
|
3
|
Dahmane N, Gadelle D, Delmas S, Criscuolo A, Eberhard S, Desnoues N, Collin S, Zhang H, Pommier Y, Forterre P, Sezonov G. topIb, a phylogenetic hallmark gene of Thaumarchaeota encodes a functional eukaryote-like topoisomerase IB. Nucleic Acids Res 2016; 44:2795-805. [PMID: 26908651 PMCID: PMC4824112 DOI: 10.1093/nar/gkw097] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 02/08/2016] [Indexed: 11/28/2022] Open
Abstract
Type IB DNA topoisomerases can eliminate torsional stresses produced during replication and transcription. These enzymes are found in all eukaryotes and a short version is present in some bacteria and viruses. Among prokaryotes, the long eukaryotic version is only observed in archaea of the phylum Thaumarchaeota. However, the activities and the roles of these topoisomerases have remained an open question. Here, we demonstrate that all available thaumarchaeal genomes contain a topoisomerase IB gene that defines a monophyletic group closely related to the eukaryotic enzymes. We show that the topIB gene is expressed in the model thaumarchaeon Nitrososphaera viennensis and we purified the recombinant enzyme from the uncultivated thaumarchaeon Candidatus Caldiarchaeum subterraneum. This enzyme is active in vitro at high temperature, making it the first thermophilic topoisomerase IB characterized so far. We have compared this archaeal type IB enzyme to its human mitochondrial and nuclear counterparts. The archaeal enzyme relaxes both negatively and positively supercoiled DNA like the eukaryotic enzymes. However, its pattern of DNA cleavage specificity is different and it is resistant to camptothecins (CPTs) and non-CPT Top1 inhibitors, LMP744 and lamellarin D. This newly described thermostable topoisomerases IB should be a promising new model for evolutionary, mechanistic and structural studies.
Collapse
Affiliation(s)
- Narimane Dahmane
- Sorbonne Universités, Université Pierre et Marie Curie (UPMC), CNRS, Institut de Biologie Paris-Seine (IBPS), Unité Evolution Paris-Seine (UMR 7138), F-75005 Paris, France
| | - Danièle Gadelle
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ.Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| | - Stéphane Delmas
- Sorbonne Universités, Université Pierre et Marie Curie (UPMC), CNRS, Institut de Biologie Paris-Seine (IBPS), Unité Evolution Paris-Seine (UMR 7138), F-75005 Paris, France
| | - Alexis Criscuolo
- Hub Bioinformatique et Biostatistique - C3BI, USR 3756 IP CNRS, Institut Pasteur, 25-28, rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - Stephan Eberhard
- Sorbonne Universités, Université Pierre et Marie Curie (UPMC), CNRS, Institut de Biologie Paris-Seine (IBPS), Unité Evolution Paris-Seine (UMR 7138), F-75005 Paris, France
| | - Nicole Desnoues
- Unité Biologie Moléculaire du Gène chez les Extrêmophiles, Département de Microbiologie, Institut Pasteur, 25-28, rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - Sylvie Collin
- Sorbonne Universités, Université Pierre et Marie Curie (UPMC), CNRS, Institut de Biologie Paris-Seine (IBPS), Unité Evolution Paris-Seine (UMR 7138), F-75005 Paris, France
| | - Hongliang Zhang
- Laboratory of Molecular Pharmacology, Developmental Therapeutics Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA
| | - Yves Pommier
- Laboratory of Molecular Pharmacology, Developmental Therapeutics Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA
| | - Patrick Forterre
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ.Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France Unité Biologie Moléculaire du Gène chez les Extrêmophiles, Département de Microbiologie, Institut Pasteur, 25-28, rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - Guennadi Sezonov
- Sorbonne Universités, Université Pierre et Marie Curie (UPMC), CNRS, Institut de Biologie Paris-Seine (IBPS), Unité Evolution Paris-Seine (UMR 7138), F-75005 Paris, France
| |
Collapse
|
4
|
Abstract
DNA replication is essential for all life forms. Although the process is fundamentally conserved in the three domains of life, bioinformatic, biochemical, structural, and genetic studies have demonstrated that the process and the proteins involved in archaeal DNA replication are more similar to those in eukaryal DNA replication than in bacterial DNA replication, but have some archaeal-specific features. The archaeal replication system, however, is not monolithic, and there are some differences in the replication process between different species. In this review, the current knowledge of the mechanisms governing DNA replication in Archaea is summarized. The general features of the replication process as well as some of the differences are discussed.
Collapse
Affiliation(s)
- Lori M Kelman
- Program in Biotechnology, Montgomery College, Germantown, Maryland 20876;
| | | |
Collapse
|
5
|
Gadelle D, Krupovic M, Raymann K, Mayer C, Forterre P. DNA topoisomerase VIII: a novel subfamily of type IIB topoisomerases encoded by free or integrated plasmids in Archaea and Bacteria. Nucleic Acids Res 2014; 42:8578-91. [PMID: 24990376 PMCID: PMC4117785 DOI: 10.1093/nar/gku568] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 06/10/2014] [Accepted: 06/11/2014] [Indexed: 11/14/2022] Open
Abstract
Type II DNA topoisomerases are divided into two families, IIA and IIB. Types IIA and IIB enzymes share homologous B subunits encompassing the ATP-binding site, but have non-homologous A subunits catalyzing DNA cleavage. Type IIA topoisomerases are ubiquitous in Bacteria and Eukarya, whereas members of the IIB family are mostly present in Archaea and plants. Here, we report the detection of genes encoding type IIB enzymes in which the A and B subunits are fused into a single polypeptide. These proteins are encoded in several bacterial genomes, two bacterial plasmids and one archaeal plasmid. They form a monophyletic group that is very divergent from archaeal and eukaryotic type IIB enzymes (DNA topoisomerase VI). We propose to classify them into a new subfamily, denoted DNA topoisomerase VIII. Bacterial genes encoding a topoisomerase VIII are present within integrated mobile elements, most likely derived from conjugative plasmids. Purified topoisomerase VIII encoded by the plasmid pPPM1a from Paenibacillus polymyxa M1 had ATP-dependent relaxation and decatenation activities. In contrast, the enzyme encoded by mobile elements integrated into the genome of Ammonifex degensii exhibited DNA cleavage activity producing a full-length linear plasmid and that from Microscilla marina exhibited ATP-independent relaxation activity. Topoisomerases VIII, the smallest known type IIB enzymes, could be new promising models for structural and mechanistic studies.
Collapse
Affiliation(s)
- Danièle Gadelle
- Université Paris-Sud, CNRS UMR8621, Institut de Génétique Microbiologie, 91405 Orsay Cedex, France
| | - Mart Krupovic
- Institut Pasteur, Unité de Biologie moléculaire du gène chez les extrêmophiles, Département de Microbiologie, F-75015 Paris, France
| | - Kasie Raymann
- Institut Pasteur, Unité de Biologie moléculaire du gène chez les extrêmophiles, Département de Microbiologie, F-75015 Paris, France
| | - Claudine Mayer
- Institut Pasteur, Unité de Microbiologie structurale, Département de Biologie structurale et Chimie, F-75015 Paris, France CNRS, UMR3528, F-75015 Paris, France Université Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, rue du Dr Roux 75015 Paris, France
| | - Patrick Forterre
- Université Paris-Sud, CNRS UMR8621, Institut de Génétique Microbiologie, 91405 Orsay Cedex, France Institut Pasteur, Unité de Biologie moléculaire du gène chez les extrêmophiles, Département de Microbiologie, F-75015 Paris, France
| |
Collapse
|
6
|
Pommier Y, Marchand C. Interfacial inhibitors: targeting macromolecular complexes. Nat Rev Drug Discov 2011; 11:25-36. [PMID: 22173432 DOI: 10.1038/nrd3404] [Citation(s) in RCA: 184] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Interfacial inhibitors belong to a broad class of natural products and synthetic drugs that are commonly used to treat cancers as well as bacterial and HIV infections. They bind selectively to interfaces as macromolecular machines assemble and are set in motion. The bound drugs transiently arrest the targeted molecular machines, which can initiate allosteric effects, or desynchronize macromolecular machines that normally function in concert. Here, we review five archetypical examples of interfacial inhibitors: the camptothecins, etoposide, the quinolone antibiotics, the vinca alkaloids and the novel anti-HIV inhibitor raltegravir. We discuss the common and diverging elements between interfacial and allosteric inhibitors and give a perspective for the rationale and methods used to discover novel interfacial inhibitors.
Collapse
Affiliation(s)
- Yves Pommier
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, US National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | |
Collapse
|