1
|
Lemcke H, David R. Potential mechanisms of microRNA mobility. Traffic 2018; 19:910-917. [PMID: 30058163 DOI: 10.1111/tra.12606] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 07/26/2018] [Accepted: 07/26/2018] [Indexed: 12/29/2022]
Abstract
microRNAs (miRNAs) are important epigenetic modulators of gene expression that control cellular physiology as well as tissue homeostasis, and development. In addition to the temporal aspects of miRNA-mediated gene regulation, the intracellular localization of miRNA is crucial for its silencing activity. Recent studies indicated that miRNA is even translocated between cells via gap junctional cell-cell contacts, allowing spatiotemporal modulation of gene expression within multicellular systems. Although non coding RNA remains a focus of intense research, studies regarding the intra-and intercellular mobility of small RNAs are still largely missing. Emerging data from experimental and computational work suggest the involvement of transport mechanisms governing proper localization of miRNA in single cells and cellular syncytia. Based on these data, we discuss a model of miRNA translocation that could help to address the spatial aspects of miRNA function and the impact of miRNA molecules on the intercellular signaling network.
Collapse
Affiliation(s)
- Heiko Lemcke
- Department of Cardiac Surgery, Reference and Translation Center for Cardiac Stem Cell Therapy (RTC), University of Rostock, Rostock, Germany.,Department Life, Light & Matter, University of Rostock, 18051 Rostock, Germany
| | - Robert David
- Department of Cardiac Surgery, Reference and Translation Center for Cardiac Stem Cell Therapy (RTC), University of Rostock, Rostock, Germany.,Department Life, Light & Matter, University of Rostock, 18051 Rostock, Germany
| |
Collapse
|
2
|
Hawley ZCE, Campos-Melo D, Droppelmann CA, Strong MJ. MotomiRs: miRNAs in Motor Neuron Function and Disease. Front Mol Neurosci 2017; 10:127. [PMID: 28522960 PMCID: PMC5415563 DOI: 10.3389/fnmol.2017.00127] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Accepted: 04/18/2017] [Indexed: 12/12/2022] Open
Abstract
MiRNAs are key regulators of the mammalian transcriptome that have been increasingly linked to degenerative diseases of the motor neurons. Although many of the miRNAs currently incriminated as participants in the pathogenesis of these diseases are also important to the normal development and function of motor neurons, at present there is no knowledge of the complete miRNA profile of motor neurons. In this review, we examine the current understanding with respect to miRNAs that are specifically required for motor neuron development, function and viability, and provide evidence that these should be considered as a functional network of miRNAs which we have collectively termed MotomiRs. We will also summarize those MotomiRs currently known to be associated with both amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA), and discuss their potential use as biomarkers.
Collapse
Affiliation(s)
- Zachary C E Hawley
- Molecular Medicine Group, Robarts Research Institute, Schulich School of Medicine and Dentistry, Western UniversityLondon, ON, Canada
| | - Danae Campos-Melo
- Molecular Medicine Group, Robarts Research Institute, Schulich School of Medicine and Dentistry, Western UniversityLondon, ON, Canada
| | - Cristian A Droppelmann
- Molecular Medicine Group, Robarts Research Institute, Schulich School of Medicine and Dentistry, Western UniversityLondon, ON, Canada
| | - Michael J Strong
- Molecular Medicine Group, Robarts Research Institute, Schulich School of Medicine and Dentistry, Western UniversityLondon, ON, Canada.,Department of Pathology, Schulich School of Medicine and Dentistry, Western UniversityLondon, ON, Canada.,Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western UniversityLondon, ON, Canada
| |
Collapse
|
3
|
Wang ZK, Liu FF, Wang Y, Jiang XM, Yu XF. Let-7a gene knockdown protects against cerebral ischemia/reperfusion injury. Neural Regen Res 2016; 11:262-9. [PMID: 27073379 PMCID: PMC4810990 DOI: 10.4103/1673-5374.177734] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The microRNA (miRNA) let-7 was one of the first miRNAs to be discovered, and is highly conserved and widely expressed among species. let-7 expression increases in brain tissue after cerebral ischemia/reperfusion injury; however, no studies have reported let-7 effects on nerve injury after cerebral ischemia/reperfusion injury. To investigate the effects of let-7 gene knockdown on cerebral ischemia/reperfusion injury, we established a rat model of cerebral ischemia/reperfusion injury. Quantitative reverse transcription-polymerase chain reaction demonstrated that 12 hours after cerebral ischemia/reperfusion injury, let-7 expression was up-regulated, peaked at 24 hours, and was still higher than that in control rats after 72 hours. Let-7 gene knockdown in rats suppressed microglial activation and inflammatory factor release, reduced neuronal apoptosis and infarct volume in brain tissue after cerebral ischemia/reperfusion injury. Western blot assays and luciferase assays revealed that mitogen-activated protein kinase phosphatase-1 (MKP1) is a direct target of let-7. Let-7 enhanced phosphorylated p38 mitogen-activated protein kinase (MAPK) and c-Jun N-terminal kinase (JNK) expression by down-regulating MKP1. These findings suggest that knockdown of let-7 inhibited the activation of p38 MAPK and JNK signaling pathways by up-regulating MKP1 expression, reduced apoptosis and the inflammatory reaction, and exerted a neuroprotective effect following cerebral ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Zhong-Kun Wang
- Department of Neurology, First Hospital, Jilin University, Changchun, Jilin Province, China
| | - Fang-Fang Liu
- Department of Neurology, Jilin Central Hospital, Jilin, Jilin Province, China
| | - Yu Wang
- Department of Hepatopancreatobiliary Surgery, the Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Xin-Mei Jiang
- Department of Neurology, First Hospital, Jilin University, Changchun, Jilin Province, China
| | - Xue-Fan Yu
- Department of Neurology, First Hospital, Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
4
|
Zhang D, Wang Y, Ji Z, Wang Z. Identification and differential expression of microRNAs associated with fat deposition in the liver of Wistar rats with nonalcoholic fatty liver disease. Gene 2016; 585:1-8. [PMID: 26971813 DOI: 10.1016/j.gene.2016.03.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 02/16/2016] [Accepted: 03/08/2016] [Indexed: 01/01/2023]
Abstract
The exact mechanism underlying hepatic steatosis in nonalcoholic fatty liver disease (NAFLD) is not clear. Clarifying the full repertoire of microRNAs (miRNAs) in NAFLD rat liver would enhance our understanding of NAFLD pathogenesis. In this study, miRNA expression levels were analyzed in liver tissue from NAFLD Wistar rats, with normal Wistar rats as negative controls. Small RNA libraries were constructed for each sample. A total of 173 conservative miRNAs and 68 potential miRNA candidates were identified. Significant differences in the expression levels of 101 conserved miRNAs were identified between the two groups. The results of GO annotation and KEGG pathway analysis revealed that some miRNAs were likely involved in the process of liver fat deposition. This study represents the first global miRNA profiling of NAFLD Wistar rat livers, and expands the miRNA repertoire for normal livers. Our findings suggest that miRNAs play important roles in liver fat deposition.
Collapse
Affiliation(s)
- Deqing Zhang
- Shandong Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Taian 271018, PR China; Laboratory Department, Taian Central Hospital, Taian 271000, PR China
| | - Yuqian Wang
- Shandong Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Taian 271018, PR China
| | - Zhibin Ji
- Shandong Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Taian 271018, PR China
| | - Zhonghua Wang
- Shandong Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Taian 271018, PR China.
| |
Collapse
|
5
|
Qi X, Zhang DH, Wu N, Xiao JH, Wang X, Ma W. ceRNA in cancer: possible functions and clinical implications. J Med Genet 2015; 52:710-8. [PMID: 26358722 DOI: 10.1136/jmedgenet-2015-103334] [Citation(s) in RCA: 946] [Impact Index Per Article: 105.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Accepted: 08/21/2015] [Indexed: 01/01/2023]
Abstract
Competing endogenous RNAs (ceRNAs) are transcripts that can regulate each other at post-transcription level by competing for shared miRNAs. CeRNA networks link the function of protein-coding mRNAs with that of non-coding RNAs such as microRNA, long non-coding RNA, pseudogenic RNA and circular RNA. Given that any transcripts harbouring miRNA response element can theoretically function as ceRNAs, they may represent a widespread form of post-transcriptional regulation of gene expression in both physiology and pathology. CeRNA activity is influenced by multiple factors such as the abundance and subcellular localisation of ceRNA components, binding affinity of miRNAs to their sponges, RNA editing, RNA secondary structures and RNA-binding proteins. Aberrations in these factors may deregulate ceRNA networks and thus lead to human diseases including cancer. In this review, we introduce the mechanisms and molecular bases of ceRNA networks, discuss their roles in the pathogenesis of cancer as well as methods of predicting and validating ceRNA interplay. At last, we discuss the limitations of current ceRNA theory, propose possible directions and envision the possibilities of ceRNAs as diagnostic biomarkers or therapeutic targets.
Collapse
Affiliation(s)
- Xiaolong Qi
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Da-Hong Zhang
- Department of Clinical Oncology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, China
| | - Nan Wu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Jun-Hua Xiao
- Department of Gastroenterology, Shanghai East Hospital, Tongji University, School of Medicine, Shanghai, China
| | - Xiang Wang
- Department of Neurology, The Affiliated Huai'an Hospital of Xuzhou Medical College and The Second People's Hospital of Huai'an, Huai'an, China
| | - Wang Ma
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
6
|
Abstract
With the advent of next generation sequencing techniques a previously unknown world of non-coding RNA molecules have been discovered. Non-coding RNA transcripts likely outnumber the group of protein coding sequences and hold promise of many new discoveries and mechanistic explanations for essential biological phenomena and pathologies. The best characterized non-coding RNA family consists in humans of about 1400 microRNAs for which abundant evidence have demonstrated fundamental importance in normal development, differentiation, growth control and in human diseases such as cancer. In this review, we summarize the current knowledge and concepts concerning the involvement of microRNAs in cancer, which have emerged from the study of cell culture and animal model systems, including the regulation of key cancer-related pathways, such as cell cycle control and the DNA damage response. Importantly, microRNA molecules are already entering the clinic as diagnostic and prognostic biomarkers for patient stratification and also as therapeutic targets and agents.
Collapse
Affiliation(s)
- Martin D Jansson
- Biotech Research and Innovation Centre and Centre for Epigenetics, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark
| | | |
Collapse
|
7
|
Abstract
With the advent of next generation sequencing techniques a previously unknown world of non-coding RNA molecules have been discovered. Non-coding RNA transcripts likely outnumber the group of protein coding sequences and hold promise of many new discoveries and mechanistic explanations for essential biological phenomena and pathologies. The best characterized non-coding RNA family consists in humans of about 1400 microRNAs for which abundant evidence have demonstrated fundamental importance in normal development, differentiation, growth control and in human diseases such as cancer. In this review, we summarize the current knowledge and concepts concerning the involvement of microRNAs in cancer, which have emerged from the study of cell culture and animal model systems, including the regulation of key cancer-related pathways, such as cell cycle control and the DNA damage response. Importantly, microRNA molecules are already entering the clinic as diagnostic and prognostic biomarkers for patient stratification and also as therapeutic targets and agents.
Collapse
Affiliation(s)
- Martin D Jansson
- Biotech Research and Innovation Centre and Centre for Epigenetics, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark
| | | |
Collapse
|