1
|
Santofimia-Castaño P, Rizzuti B, Xia Y, Abian O, Peng L, Velázquez-Campoy A, Neira JL, Iovanna J. Targeting intrinsically disordered proteins involved in cancer. Cell Mol Life Sci 2020; 77:1695-1707. [PMID: 31667555 PMCID: PMC7190594 DOI: 10.1007/s00018-019-03347-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/23/2019] [Accepted: 10/16/2019] [Indexed: 12/17/2022]
Abstract
Intrinsically disordered proteins (IDPs) do not have a well-defined structure under physiological conditions, but they have key roles in cell signaling and regulation, and they are frequently related to the development of diseases, such as cancer and other malignancies. This has converted IDPs in attractive therapeutic targets; however, targeting IDPs is challenging because of their dynamic nature. In the last years, different experimental and computational approaches, as well as the combination of both, have been explored to identify molecules to target either the hot-spots or the allosteric sites of IDPs. In this review, we summarize recent developments in successful targeting of IDPs, all of which are involved in different cancer types. The strategies used to develop and design (or in one particular example, to repurpose) small molecules targeting IDPs are, in a global sense, similar to those used in well-folded proteins: (1) screening of chemically diverse or target-oriented compound libraries; or (2) study of the interfaces involved in recognition of their natural partners, and design of molecular candidates capable of binding to such binding interface. We describe the outcomes of using these approaches in targeting IDPs involved in cancer, in the view to providing insight, to target IDPs in general. In a broad sense, the designed small molecules seem to target the most hydrophobic regions of the IDPs, hampering macromolecule (DNA or protein)-IDP interactions; furthermore, in most of the molecule-IDP complexes described so far, the protein remains disordered.
Collapse
Affiliation(s)
- Patricia Santofimia-Castaño
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS, UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, 163 Avenue de Luminy, 13288, Marseille, France
| | - Bruno Rizzuti
- CNR-NANOTEC, Licryl-UOS Cosenza and CEMIF.Cal, Department of Physics, University of Calabria, Via P. Bucci, Cubo 31 C, Arcavacata di Rende, 87036, Cosenza, Italy
| | - Yi Xia
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, No. 55 Daxuecheng South Road, Chongqing, 401331, People's Republic of China
| | - Olga Abian
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Joint Units IQFR-CSIC-BIFI, and GBsC-CSIC-BIFI, Universidad de Zaragoza, 50009, Zaragoza, Spain
- Aragon Institute for Health Research (IIS Aragon), Zaragoza, Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
- Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, 50009, Zaragoza, Spain
- Instituto Aragonés de Ciencias de la Salud (IACS), 50009, Zaragoza, Spain
| | - Ling Peng
- Aix-Marseille Université, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille, UMR 7325, Equipe Labellisée Ligue Contre le Cancer, Parc Scientifique et Technologique de Luminy, 163 Avenue de Luminy, 13288, Marseille, France
| | - Adrián Velázquez-Campoy
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Joint Units IQFR-CSIC-BIFI, and GBsC-CSIC-BIFI, Universidad de Zaragoza, 50009, Zaragoza, Spain
- Aragon Institute for Health Research (IIS Aragon), Zaragoza, Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
- Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, 50009, Zaragoza, Spain
- Fundacion ARAID, Government of Aragon, 50018, Zaragoza, Spain
| | - José L Neira
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Joint Units IQFR-CSIC-BIFI, and GBsC-CSIC-BIFI, Universidad de Zaragoza, 50009, Zaragoza, Spain.
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Avda. del Ferrocarril s/n, Elche, 03202, Alicante, Spain.
| | - Juan Iovanna
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS, UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, 163 Avenue de Luminy, 13288, Marseille, France.
| |
Collapse
|
2
|
Li KKC, Chau BL, Lee KAW. Differential interaction of PRMT1 with RGG-boxes of the FET family proteins EWS and TAF15. Protein Sci 2017; 27:633-642. [PMID: 29193371 DOI: 10.1002/pro.3354] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 11/23/2017] [Accepted: 11/27/2017] [Indexed: 12/31/2022]
Abstract
The FET sub-family (FUS/TLS, EWS, TAF15) of RNA-binding proteins have remarkably similar overall structure but diverse biological and pathological roles. The molecular basis for FET protein specialization is largely unknown. Gly-Arg-Rich regions (RGG-boxes) within FET proteins are targets for methylation by Protein-Arginine-Methyl-Transferase-1 (PRMT1) and substrate capture is thought to involve electrostatic attraction between positively charged polyRGG substrates and negatively charged surface channels of PRMT1. Unlike FUS and EWS, a high proportion of TAF15 RGG-boxes are embedded within neutrally charged YGGDR(S/G)G repeats, suggesting that they might not bind well to PRMT1. This notion runs contrary however to a report that YGGDR(S/G)G repeats are methylated by PRMT1. Using peptide-based polyRGG substrates and a novel 2-hybrid binding assay, we find that the Asp residue in YGGDR(S/G)G repeats confers poor binding to PRMT1. Our results therefore indicate that YGGDR(S/G)G repeats may contribute to TAF15 specialization by enabling differential interactions with PRMT1 and reduced overall levels of TAF15 methylation compared with other FET proteins. By analogy with molecular recognition of other disordered polyvalent ligands by globular protein partners, we also propose a dynamic polyelectrostatic model for substrate capture by PRMT1.
Collapse
Affiliation(s)
- Kim K C Li
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, S.A.R, China
| | - Bess L Chau
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, S.A.R, China
| | - Kevin A W Lee
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, S.A.R, China
| |
Collapse
|
3
|
Eukaryotic transcription factors: paradigms of protein intrinsic disorder. Biochem J 2017; 474:2509-2532. [DOI: 10.1042/bcj20160631] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/19/2017] [Accepted: 05/05/2017] [Indexed: 12/17/2022]
Abstract
Gene-specific transcription factors (TFs) are key regulatory components of signaling pathways, controlling, for example, cell growth, development, and stress responses. Their biological functions are determined by their molecular structures, as exemplified by their structured DNA-binding domains targeting specific cis-acting elements in genes, and by the significant lack of fixed tertiary structure in their extensive intrinsically disordered regions. Recent research in protein intrinsic disorder (ID) has changed our understanding of transcriptional activation domains from ‘negative noodles’ to ID regions with function-related, short sequence motifs and molecular recognition features with structural propensities. This review focuses on molecular aspects of TFs, which represent paradigms of ID-related features. Through specific examples, we review how the ID-associated flexibility of TFs enables them to participate in large interactomes, how they use only a few hydrophobic residues, short sequence motifs, prestructured motifs, and coupled folding and binding for their interactions with co-activators, and how their accessibility to post-translational modification affects their interactions. It is furthermore emphasized how classic biochemical concepts like allostery, conformational selection, induced fit, and feedback regulation are undergoing a revival with the appreciation of ID. The review also describes the most recent advances based on computational simulations of ID-based interaction mechanisms and structural analysis of ID in the context of full-length TFs and suggests future directions for research in TF ID.
Collapse
|
4
|
Synergy of aromatic residues and phosphoserines within the intrinsically disordered DNA-binding inhibitory elements of the Ets-1 transcription factor. Proc Natl Acad Sci U S A 2014; 111:11019-24. [PMID: 25024220 DOI: 10.1073/pnas.1401891111] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The E26 transformation-specific (Ets-1) transcription factor is autoinhibited by a conformationally disordered serine-rich region (SRR) that transiently interacts with its DNA-binding ETS domain. In response to calcium signaling, autoinhibition is reinforced by calmodulin-dependent kinase II phosphorylation of serines within the SRR. Using mutagenesis and quantitative DNA-binding measurements, we demonstrate that phosphorylation-enhanced autoinhibition requires the presence of phenylalanine or tyrosine (ϕ) residues adjacent to the SRR phosphoacceptor serines. The introduction of additional phosphorylated Ser-ϕ-Asp, but not Ser-Ala-Asp, repeats within the SRR dramatically reinforces autoinhibition. NMR spectroscopic studies of phosphorylated and mutated SRR variants, both within their native context and as separate trans-acting peptides, confirmed that the aromatic residues and phosphoserines contribute to the formation of a dynamic complex with the ETS domain. Complementary NMR studies also identified the SRR-interacting surface of the ETS domain, which encompasses its positively charged DNA-recognition interface and an adjacent region of neutral polar and nonpolar residues. Collectively, these studies highlight the role of aromatic residues and their synergy with phosphoserines in an intrinsically disordered regulatory sequence that integrates cellular signaling and gene expression.
Collapse
|
6
|
Song J, Ng SC, Tompa P, Lee KAW, Chan HS. Polycation-π interactions are a driving force for molecular recognition by an intrinsically disordered oncoprotein family. PLoS Comput Biol 2013; 9:e1003239. [PMID: 24086122 PMCID: PMC3784488 DOI: 10.1371/journal.pcbi.1003239] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 08/12/2013] [Indexed: 12/20/2022] Open
Abstract
Molecular recognition by intrinsically disordered proteins (IDPs) commonly involves specific localized contacts and target-induced disorder to order transitions. However, some IDPs remain disordered in the bound state, a phenomenon coined “fuzziness”, often characterized by IDP polyvalency, sequence-insensitivity and a dynamic ensemble of disordered bound-state conformations. Besides the above general features, specific biophysical models for fuzzy interactions are mostly lacking. The transcriptional activation domain of the Ewing's Sarcoma oncoprotein family (EAD) is an IDP that exhibits many features of fuzziness, with multiple EAD aromatic side chains driving molecular recognition. Considering the prevalent role of cation-π interactions at various protein-protein interfaces, we hypothesized that EAD-target binding involves polycation- π contacts between a disordered EAD and basic residues on the target. Herein we evaluated the polycation-π hypothesis via functional and theoretical interrogation of EAD variants. The experimental effects of a range of EAD sequence variations, including aromatic number, aromatic density and charge perturbations, all support the cation-π model. Moreover, the activity trends observed are well captured by a coarse-grained EAD chain model and a corresponding analytical model based on interaction between EAD aromatics and surface cations of a generic globular target. EAD-target binding, in the context of pathological Ewing's Sarcoma oncoproteins, is thus seen to be driven by a balance between EAD conformational entropy and favorable EAD-target cation-π contacts. Such a highly versatile mode of molecular recognition offers a general conceptual framework for promiscuous target recognition by polyvalent IDPs. Understanding how proteins recognize each other is central to deciphering the inner workings of living things and for biomedical research. It has long been known that the sequence of a protein, which is a string of different amino acids, can dictate how a protein molecule folds into a well-defined shape required for biological tasks. Many folded proteins recognize and bind with each other by a tight geometric fit similar to that between a lock and its key. Recently, however, it has become clear that some proteins function as a flexible string, in constant motion, without forming a stable shape. Understanding how such “disordered” proteins work is challenging. To gain insight, we studied a disordered protein region that causes a large family of human cancers. Employing an innovative combination of experimental and theoretical techniques, we describe a new mode of protein interaction based on multiple simple contacts between one type of amino acid (aromatic) in the disordered protein and another type (positively charged) on the partner protein. Because this mechanism also underlies the ability of the disordered protein to cause cancer, further investigation of this unprecedented mode of protein-protein interaction may open up new avenues for cancer therapy.
Collapse
Affiliation(s)
- Jianhui Song
- Departments of Biochemistry, Molecular Genetics, and Physics, University of Toronto, Toronto, Ontario, Canada
| | - Sheung Chun Ng
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong S.A.R., China
| | - Peter Tompa
- VIB Department of Structural Biology, Vrije Universiteit Brussel, Brussels, Belgium
- Institute of Enzymology, Hungarian Academy of Sciences, Budapest, Hungary
| | - Kevin A. W. Lee
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong S.A.R., China
- * E-mail: (KAWL); (HSC)
| | - Hue Sun Chan
- Departments of Biochemistry, Molecular Genetics, and Physics, University of Toronto, Toronto, Ontario, Canada
- * E-mail: (KAWL); (HSC)
| |
Collapse
|
7
|
Functions of heterogeneous nuclear ribonucleoproteins in stem cell potency and differentiation. BIOMED RESEARCH INTERNATIONAL 2013; 2013:623978. [PMID: 23984388 PMCID: PMC3745930 DOI: 10.1155/2013/623978] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 07/02/2013] [Accepted: 07/04/2013] [Indexed: 12/26/2022]
Abstract
Stem cells possess huge importance in developmental biology, disease modelling, cell replacement therapy, and tissue engineering in regenerative medicine because they have the remarkable potential for self-renewal and to differentiate into almost all the cell types in the human body. Elucidation of molecular mechanisms regulating stem cell potency and differentiation is essential and critical for extensive application. Heterogeneous nuclear ribonucleoproteins (hnRNPs) are modular proteins consisting of RNA-binding motifs and auxiliary domains characterized by extensive and divergent functions in nucleic acid metabolism. Multiple roles of hnRNPs in transcriptional and posttranscriptional regulation enable them to be effective gene expression regulators. More recent findings show that hnRNP proteins are crucial factors implicated in maintenance of stem cell self-renewal and pluripotency and cell differentiation. The hnRNPs interact with certain sequences in target gene promoter regions to initiate transcription. In addition, they recognize 3′UTR or 5′UTR of specific gene mRNA forming mRNP complex to regulate mRNA stability and translation. Both of these regulatory pathways lead to modulation of gene expression that is associated with stem cell proliferation, cell cycle control, pluripotency, and committed differentiation.
Collapse
|