1
|
Huang G, Tang H, Liu Y, Zhang C, Ke PC, Sun Y, Ding F. Direct Observation of Seeded Conformational Conversion of hIAPP In Silico Reveals the Mechanisms for Morphological Dependence and Asymmetry of Fibril Growth. J Chem Inf Model 2023; 63:5863-5873. [PMID: 37651616 PMCID: PMC10529695 DOI: 10.1021/acs.jcim.3c00898] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Rapid growth of amyloid fibrils via a seeded conformational conversion of monomers is a critical step of fibrillization and important for disease transmission and progression. Amyloid fibrils often display diverse morphologies with distinct populations, and yet the molecular mechanisms of fibril elongation and their corresponding morphological dependence remain poorly understood. Here, we computationally investigated the single-molecular growth of two experimentally resolved human islet amyloid polypeptide fibrils of different morphologies. In both cases, the incorporation of monomers into preformed fibrils was observed. The conformational conversion dynamics was characterized by a small number of fibril growth intermediates. Fibril morphology affected monomer binding at fibril elongation and lateral surfaces as well as the seeded conformational conversion dynamics at the fibril ends, resulting in different fibril elongation rates and populations. We also observed an asymmetric fibril growth as in our prior experiments, attributing to differences of two fibril ends in terms of their local surface curvatures and exposed hydrogen-bond donors and acceptors. Together, our mechanistic findings afforded a theoretical basis for delineating different amyloid strains-entailed divergent disease progression.
Collapse
Affiliation(s)
- Gangtong Huang
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
| | - Huayuan Tang
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
| | - Yuying Liu
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| | - Chi Zhang
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
| | - Pu Chun Ke
- The Nanomedicine Center, The Great Bay Area National Institute for Nanotechnology Innovation, 136 Kaiyuan Avenue, Guangzhou, 510700, China
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Yunxiang Sun
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
| |
Collapse
|
2
|
Xing Y, Andrikopoulos N, Zhang Z, Sun Y, Ke PC, Ding F. Modulating Nanodroplet Formation En Route to Fibrillization of Amyloid Peptides with Designed Flanking Sequences. Biomacromolecules 2022; 23:4179-4191. [PMID: 36137260 PMCID: PMC9618360 DOI: 10.1021/acs.biomac.2c00642] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Soluble oligomers populating early amyloid aggregation can be regarded as nanodroplets of liquid-liquid phase separation (LLPS). Amyloid peptides typically contain hydrophobic aggregation-prone regions connected by hydrophilic linkers and flanking sequences, and such a sequence hydropathy pattern drives the formation of supramolecular structures in the nanodroplets and modulates subsequent fibrillization. Here, we studied LLPS and fibrillization of coarse-grained amyloid peptides with increasing flanking sequences. Nanodroplets assumed lamellar, cylindrical micellar, and spherical micellar structures with increasing peptide hydrophilic/hydrophobic ratios, and such morphologies governed subsequent fibrillization processes. Adding glycine-serine repeats as flanking sequences to Aβ16-22, the amyloidogenic core of amyloid-β, our computational predictions of morphological transitions were corroborated experimentally. The uncovered inter-relationships between the peptide sequence pattern, oligomer/nanodroplet morphology, and fibrillization pathway, kinetics, and structure may contribute to our understanding of pathogenic amyloidosis in aging, facilitate future efforts ameliorating amyloidosis through peptide engineering, and aid in the design of novel amyloid-based functional nanobiomaterials and nanocomposites.
Collapse
Affiliation(s)
- Yanting Xing
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
| | - Nicholas Andrikopoulos
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Zhenzhen Zhang
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
| | - Yunxiang Sun
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
- Department of Physics, Ningbo University, Ningbo 315211, China
| | - Pu Chun Ke
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- Nanomedicine Center, The GBA National Institute for Nanotechnology Innovation, 136 Kaiyuan Avenue, Guangzhou, 510700, China
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
| |
Collapse
|
3
|
Benhamou Goldfajn N, Tang H, Ding F. Substoichiometric Inhibition of Insulin against IAPP Aggregation Is Attenuated by the Incompletely Processed N-Terminus of proIAPP. ACS Chem Neurosci 2022; 13:2006-2016. [PMID: 35704461 DOI: 10.1021/acschemneuro.2c00231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Substoichiometric aggregation inhibition of human islet amyloid polypeptide (IAPP), the hallmark of type 2 diabetes impacting millions of people, is crucial for developing clinic therapies, yet it remains challenging given that many candidate inhibitors require high doses. Intriguingly, insulin, the key regulatory polypeptide on blood glucose levels that are cosynthesized, costored, and cosecreted with IAPP by pancreatic β cells, has been identified as a potent inhibitor that can suppress IAPP amyloid aggregation at substoichiometric concentrations. Here, we computationally investigated the molecular mechanisms of the substoichiometric inhibition of insulin against the aggregation of IAPP and the incompletely processed IAPP (proIAPP) using discrete molecular dynamics simulations. Our results suggest that the amyloid aggregations of both IAPP and proIAPP might be disrupted by insulin through its binding with the shared amyloidogenic core sequences. However, the N-terminus of proIAPP competed with the amyloidogenic core sequences for the insulin interactions, resulting in attenuated inhibition by insulin. Moreover, insulin preferred to bind the elongation surfaces of IAPP seeds with fibril-like structure, with a stronger affinity than that of IAPP monomers. The capping of elongation surfaces by a small amount of insulin sterically prohibited the seed growth via monomer addition, achieving the substoichiometric inhibition. Together, our computational results provided molecular insights for the substoichiometric inhibition of insulin against IAPP aggregation, also the weakened effect on proIAPP. The uncovered substoichiometric inhibition by capping the elongation of amyloid seeds or fibrils may guide the rational designs of new potent inhibitors effective at low doses.
Collapse
Affiliation(s)
- Nadav Benhamou Goldfajn
- Department of Physics and Astronomy, Clemson University, Clemson, South Carolina 29634, United States.,University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Huayuan Tang
- Department of Physics and Astronomy, Clemson University, Clemson, South Carolina 29634, United States
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, South Carolina 29634, United States
| |
Collapse
|
4
|
Tang H, Li Y, Kakinen A, Andrikopoulos N, Sun Y, Kwak E, Davis TP, Ding F, Ke PC. Graphene quantum dots obstruct the membrane axis of Alzheimer's amyloid beta. Phys Chem Chem Phys 2021; 24:86-97. [PMID: 34878460 PMCID: PMC8771921 DOI: 10.1039/d1cp04246g] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Alzheimer's disease (AD) is a primary form of dementia with debilitating consequences, but no effective cure is available. While the pathophysiology of AD remains multifactorial, the aggregation of amyloid beta (Aβ) mediated by the cell membrane is known to be the cause for the neurodegeneration associated with AD. Here we examined the effects of graphene quantum dots (GQDs) on the obstruction of the membrane axis of Aβ in its three representative forms of monomers (Aβ-m), oligomers (Aβ-o), and amyloid fibrils (Aβ-f). Specifically, we determined the membrane fluidity of neuroblastoma SH-SY5Y cells perturbed by the Aβ species, especially by the most toxic Aβ-o, and demonstrated their recovery by GQDs using confocal fluorescence microscopy. Our computational data through discrete molecular dynamics simulations further revealed energetically favorable association of the Aβ species with the GQDs in overcoming peptide-peptide aggregation. Overall, this study positively implicated GQDs as an effective agent in breaking down the membrane axis of Aβ, thereby circumventing adverse downstream events and offering a potential therapeutic solution for AD.
Collapse
Affiliation(s)
- Huayuan Tang
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
| | - Yuhuan Li
- Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, Shanghai, 200032, China,Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Aleksandr Kakinen
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane Qld 4072, Australia
| | - Nicholas Andrikopoulos
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Yunxiang Sun
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| | - Eunbi Kwak
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia,The GBA National Institute for Nanotechnology Innovation, 136 Kaiyuan Avenue, Guangzhou, 510700, China
| | - Thomas P. Davis
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia,Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane Qld 4072, Australia
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
| | - Pu Chun Ke
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia,Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane Qld 4072, Australia,The GBA National Institute for Nanotechnology Innovation, 136 Kaiyuan Avenue, Guangzhou, 510700, China
| |
Collapse
|
5
|
Kolimi N, Pabbathi A, Saikia N, Ding F, Sanabria H, Alper J. Out-of-Equilibrium Biophysical Chemistry: The Case for Multidimensional, Integrated Single-Molecule Approaches. J Phys Chem B 2021; 125:10404-10418. [PMID: 34506140 PMCID: PMC8474109 DOI: 10.1021/acs.jpcb.1c02424] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
![]()
Out-of-equilibrium
processes are ubiquitous across living organisms
and all structural hierarchies of life. At the molecular scale, out-of-equilibrium
processes (for example, enzyme catalysis, gene regulation, and motor
protein functions) cause biological macromolecules to sample an ensemble
of conformations over a wide range of time scales. Quantifying and
conceptualizing the structure–dynamics to function relationship
is challenging because continuously evolving multidimensional energy
landscapes are necessary to describe nonequilibrium biological processes
in biological macromolecules. In this perspective, we explore the
challenges associated with state-of-the-art experimental techniques
to understanding biological macromolecular function. We argue that
it is time to revisit how we probe and model functional out-of-equilibrium
biomolecular dynamics. We suggest that developing integrated single-molecule
multiparametric force–fluorescence instruments and using advanced
molecular dynamics simulations to study out-of-equilibrium biomolecules
will provide a path towards understanding the principles of and mechanisms
behind the structure–dynamics to function paradigm in biological
macromolecules.
Collapse
Affiliation(s)
- Narendar Kolimi
- Department of Physics and Astronomy, Clemson University, Clemson, South Carolina 29634, United States
| | - Ashok Pabbathi
- Department of Physics and Astronomy, Clemson University, Clemson, South Carolina 29634, United States
| | - Nabanita Saikia
- Department of Physics and Astronomy, Clemson University, Clemson, South Carolina 29634, United States
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, South Carolina 29634, United States
| | - Hugo Sanabria
- Department of Physics and Astronomy, Clemson University, Clemson, South Carolina 29634, United States
| | - Joshua Alper
- Department of Physics and Astronomy, Clemson University, Clemson, South Carolina 29634, United States.,Department of Biological Sciences, Clemson University, Clemson, South Carolina 29634, United States
| |
Collapse
|
6
|
Javed I, Zhang Z, Adamcik J, Andrikopoulos N, Li Y, Otzen DE, Lin S, Mezzenga R, Davis TP, Ding F, Ke PC. Accelerated Amyloid Beta Pathogenesis by Bacterial Amyloid FapC. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2001299. [PMID: 32999841 PMCID: PMC7509637 DOI: 10.1002/advs.202001299] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/10/2020] [Indexed: 05/03/2023]
Abstract
The gut-brain axis has attracted increasing attention in recent years, fueled by accumulating symptomatic, physiological, and pathological findings. In this study, the aggregation and toxicity of amyloid beta (Aβ), the pathogenic peptide associated with Alzheimer's disease (AD), seeded by FapC amyloid fragments (FapCS) of Pseudomonas aeruginosa that colonizes the gut microbiome through infections are examined. FapCS display favorable binding with Aβ and a catalytic capacity in seeding the peptide amyloidosis. Upon seeding, twisted Aβ fibrils assume a much-shortened periodicity approximating that of FapC fibrils, accompanied by a 37% sharp rise in the fibrillar diameter, compared with the control. The robust seeding capacity for Aβ by FapCS and the biofilm fragments derived from P. aeruginosa entail abnormal behavior pathology and immunohistology, as well as impaired cognitive function of zebrafish. Together, the data offer the first concrete evidence of structural integration and inheritance in peptide cross-seeding, a crucial knowledge gap in understanding the pathological correlations between different amyloid diseases. The catalytic role of infectious bacteria in promoting Aβ amyloidosis may be exploited as a potential therapeutic target, while the altered mesoscopic signatures of Aβ fibrils may serve as a prototype for molecular assembly and a biomarker for screening bacterial infections in AD.
Collapse
Affiliation(s)
- Ibrahim Javed
- Australian Institute for Bioengineering and NanotechnologyUniversity of QueenslandBrisbaneQLD4072Australia
- ARC Centre of Excellence in Convergent Bio‐Nano Science and TechnologyMonash Institute of Pharmaceutical SciencesMonash University381 Royal ParadeParkvilleVIC3052Australia
| | - Zhenzhen Zhang
- Department of Physics and AstronomyClemson UniversityClemsonSC29634USA
| | - Jozef Adamcik
- Food & Soft MaterialsDepartment of Health Science & TechnologyETH ZurichSchmelzbergstrasse 9, LFO, E23Zurich8092Switzerland
| | - Nicholas Andrikopoulos
- ARC Centre of Excellence in Convergent Bio‐Nano Science and TechnologyMonash Institute of Pharmaceutical SciencesMonash University381 Royal ParadeParkvilleVIC3052Australia
| | - Yuhuan Li
- ARC Centre of Excellence in Convergent Bio‐Nano Science and TechnologyMonash Institute of Pharmaceutical SciencesMonash University381 Royal ParadeParkvilleVIC3052Australia
| | - Daniel E. Otzen
- Interdisciplinary Nanoscience Center (iNANO)University of AarhusAarhus CAarhus8000Denmark
| | - Sijie Lin
- College of Environmental Science and EngineeringBiomedical Multidisciplinary Innovation Research InstituteShanghai East HospitalShanghai Institute of Pollution Control and Ecological SecurityTongji University1239 Siping RoadShanghai200092China
| | - Raffaele Mezzenga
- Food & Soft MaterialsDepartment of Health Science & TechnologyETH ZurichSchmelzbergstrasse 9, LFO, E23Zurich8092Switzerland
| | - Thomas P. Davis
- Australian Institute for Bioengineering and NanotechnologyUniversity of QueenslandBrisbaneQLD4072Australia
- ARC Centre of Excellence in Convergent Bio‐Nano Science and TechnologyMonash Institute of Pharmaceutical SciencesMonash University381 Royal ParadeParkvilleVIC3052Australia
| | - Feng Ding
- Department of Physics and AstronomyClemson UniversityClemsonSC29634USA
| | - Pu Chun Ke
- ARC Centre of Excellence in Convergent Bio‐Nano Science and TechnologyMonash Institute of Pharmaceutical SciencesMonash University381 Royal ParadeParkvilleVIC3052Australia
- Zhongshan HospitalFudan University111 Yixueyuan Rd, Xuhui DistrictShanghai200032China
| |
Collapse
|
7
|
Huma ZE, Javed I, Zhang Z, Bilal H, Sun Y, Hussain SZ, Davis TP, Otzen DE, Landersdorfer CB, Ding F, Hussain I, Ke PC. Nanosilver Mitigates Biofilm Formation via FapC Amyloidosis Inhibition. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1906674. [PMID: 31984626 PMCID: PMC7260094 DOI: 10.1002/smll.201906674] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 12/25/2019] [Indexed: 05/19/2023]
Abstract
Multidrug resistance of bacteria is a major challenge due to the wide-spread use of antibiotics. While a range of strategies have been developed in recent years, suppression of bacterial activity and virulence via their network of extracellular amyloid has rarely been explored, especially with nanomaterials. Here, silver nanoparticles and nanoclusters (AgNPs and AgNCs) capped with cationic branched polyethylenimine polymer are synthesized, and their antimicrobial potentials are determined at concentrations safe to mammalian cells. Compared with the ultrasmall AgNCs, AgNPs entail stronger binding to suppress the fibrillization of FapC, a major protein constituent of the extracellular amyloid matrix of Pseudomonas aeruginosa. Both types of nanoparticles exhibit concentration-dependent antibiofilm and antimicrobial properties against P. aeruginosa. At concentrations of 1 × 10-6 m or below, both the bactericidal activity of AgNCs and the antibiofilm capacity of AgNPs are associated with their structure-mediated bio-nano interactions but not ion release. For AgNPs, specifically, their antibiofilm potency correlates with their capacity of FapC fibrillization inhibition, but not with their bactericidal activity. This study demonstrates the antimicrobial potential of safe nanotechnology through the novel route of amyloidosis inhibition.
Collapse
Affiliation(s)
- Zil-E Huma
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
- Department of Chemistry & Chemical Engineering, SBA School of Science & Engineering (SBASSE), Lahore University of Management Science (LUMS), DHA, Lahore, 54792, Pakistan
| | - Ibrahim Javed
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Zhenzhen Zhang
- Department of Physics and Astronomy, Clemson University, Clemson, SC, 29634, USA
| | - Hajira Bilal
- Centre for Medicine Use and Safety, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
| | - Yunxiang Sun
- Department of Physics and Astronomy, Clemson University, Clemson, SC, 29634, USA
- Department of Physics, Faculty of Science, Ningbo University, Ningbo, 315211, China
| | - Syed Zajif Hussain
- Department of Chemistry & Chemical Engineering, SBA School of Science & Engineering (SBASSE), Lahore University of Management Science (LUMS), DHA, Lahore, 54792, Pakistan
| | - Thomas P Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Daniel E Otzen
- Interdisciplinary Nanoscience Center (iNANO), University of Aarhus, 8000, Aarhus C, Denmark
| | - Cornelia B Landersdorfer
- Centre for Medicine Use and Safety, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, SC, 29634, USA
| | - Irshad Hussain
- Department of Chemistry & Chemical Engineering, SBA School of Science & Engineering (SBASSE), Lahore University of Management Science (LUMS), DHA, Lahore, 54792, Pakistan
| | - Pu Chun Ke
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
| |
Collapse
|
8
|
Wang B, Sun Y, Davis TP, Ke PC, Wu Y, Ding F. Understanding Effects of PAMAM Dendrimer Size and Surface Chemistry on Serum Protein Binding with Discrete Molecular Dynamics Simulations. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2018; 6:11704-11715. [PMID: 30881771 PMCID: PMC6413314 DOI: 10.1021/acssuschemeng.8b01959] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Polyamidoamine (PAMAM) dendrimers, a class of polymeric nanoparticles (NPs) with highly-controllable sizes and surface chemistry, are promising candidates for many biomedical applications, including drug and gene delivery, imaging, and inhibition of amyloid aggregation. In circulation, binding of serum proteins with dendritic NPs renders the formation of protein corona and alters the biological identity of the NP core, which may subsequently elicit immunoresponse and cytotoxicity. Understanding the effects of PAMAM size and surface chemistry on serum protein binding is, therefore, crucial to enable their broad biomedical applications. Here, by applying atomistic discrete molecular dynamics (DMD) simulations, we first uncovered the binding of PAMAM with HSA and Ig and detailed the dependences of such binding on PAMAM size and surface modification. Compared to either anionic or cationic surfaces, modifications with neutral phosphorylcholine (PC), polyethylene glycol (PEG), and hydroxyls (OH) significantly reduced binding with proteins. The relatively strong binding between proteins and PAMAM dendrimers with charged surface groups was mainly driven by electrostatic interactions as well as hydrophobic interactions. Using steered DMD (SDMD) simulations, we conducted a force-pulling experiment in silico estimating the critical forces separating PAMAM-protein complexes and deriving the corresponding free energy barriers for dissociation. The SDMD-derived HSA-binding affinities were consistent with existing experimental measurements. Our results highlighted the association dynamics of protein-dendrimer interactions and binding affinities, whose implications range from fundamental nanobio interfacial phenomena to the development of "stealth NPs".
Collapse
Affiliation(s)
- Bo Wang
- department of Physics and Astronomy, Clemson University,
Clemson, SC 29634, USA
- Department of Systems and Computational Biology, Albert
Einstein College of Medicine, Bronx, NY 10461, USA
| | - Yunxiang Sun
- department of Physics and Astronomy, Clemson University,
Clemson, SC 29634, USA
| | - Thomas P. Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science and
Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381
Royal Parade, Parkville, VIC 3052, Australia
| | - Pu Chun Ke
- ARC Centre of Excellence in Convergent Bio-Nano Science and
Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381
Royal Parade, Parkville, VIC 3052, Australia
| | - Yinghao Wu
- Department of Systems and Computational Biology, Albert
Einstein College of Medicine, Bronx, NY 10461, USA
| | - Feng Ding
- department of Physics and Astronomy, Clemson University,
Clemson, SC 29634, USA
| |
Collapse
|
9
|
Brodie NI, Popov KI, Petrotchenko EV, Dokholyan NV, Borchers CH. Solving protein structures using short-distance cross-linking constraints as a guide for discrete molecular dynamics simulations. SCIENCE ADVANCES 2017; 3:e1700479. [PMID: 28695211 PMCID: PMC5501500 DOI: 10.1126/sciadv.1700479] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 05/19/2017] [Indexed: 05/21/2023]
Abstract
We present an integrated experimental and computational approach for de novo protein structure determination in which short-distance cross-linking data are incorporated into rapid discrete molecular dynamics (DMD) simulations as constraints, reducing the conformational space and achieving the correct protein folding on practical time scales. We tested our approach on myoglobin and FK506 binding protein-models for α helix-rich and β sheet-rich proteins, respectively-and found that the lowest-energy structures obtained were in agreement with the crystal structure, hydrogen-deuterium exchange, surface modification, and long-distance cross-linking validation data. Our approach is readily applicable to other proteins with unknown structures.
Collapse
Affiliation(s)
- Nicholas I. Brodie
- University of Victoria–Genome British Columbia Proteomics Centre, Vancouver Island Technology Park, #3101-4464 Markham Street, Victoria, British Columbia V8Z7X8, Canada
| | - Konstantin I. Popov
- Department of Biochemistry and Biophysics, University of North Carolina, Genetic Medicine Building, 120 Mason Farm Road, Chapel Hill, NC 27599, USA
| | - Evgeniy V. Petrotchenko
- University of Victoria–Genome British Columbia Proteomics Centre, Vancouver Island Technology Park, #3101-4464 Markham Street, Victoria, British Columbia V8Z7X8, Canada
| | - Nikolay V. Dokholyan
- Department of Biochemistry and Biophysics, University of North Carolina, Genetic Medicine Building, 120 Mason Farm Road, Chapel Hill, NC 27599, USA
| | - Christoph H. Borchers
- University of Victoria–Genome British Columbia Proteomics Centre, Vancouver Island Technology Park, #3101-4464 Markham Street, Victoria, British Columbia V8Z7X8, Canada
- Department of Biochemistry and Microbiology, University of Victoria, Room 270d, Petch Building, 3800 Finnerty Road, Victoria, British Columbia V8P 5C2, Canada
- Gerald Bronfman Department of Oncology, Jewish General Hospital, Suite 720, 5100 de Maisonneuve Boulevard West, Montreal, Quebec H4A 3T2, Canada
- Proteomics Centre, Segal Cancer Centre, Lady Davis Institute, Jewish General Hospital, McGill University, 3755 Côte-Sainte-Catherine Road, Montreal, Quebec H3T 1E2, Canada
| |
Collapse
|
10
|
Käkinen A, Ding F, Chen P, Mortimer M, Kahru A, Ke PC. Interaction of firefly luciferase and silver nanoparticles and its impact on enzyme activity. NANOTECHNOLOGY 2013; 24:345101. [PMID: 23899823 DOI: 10.1088/0957-4484/24/34/345101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
We report on the dose-dependent inhibition of firefly luciferase activity induced by exposure of the enzyme to 20 nm citrate-coated silver nanoparticles (AgNPs). The inhibition mechanism was examined by characterizing the physicochemical properties and biophysical interactions of the enzyme and the AgNPs. Consistently, binding of the enzyme induced an increase in zeta potential from -22 to 6 mV for the AgNPs, triggered a red-shift of 44 nm in the absorbance peak of the AgNPs, and rendered a 'protein corona' of 20 nm in thickness on the nanoparticle surfaces. However, the secondary structures of the enzyme were only marginally affected upon formation of the protein corona, as verified by circular dichroism spectroscopy measurement and multiscale discrete molecular dynamics simulations. Rather, inductively coupled plasma mass spectrometry measurement revealed a significant ion release from the AgNPs. The released silver ions could readily react with the cysteine residues and N-groups of the enzyme to alter the physicochemical environment of their neighboring catalytic site and subsequently impair the enzymatic activity.
Collapse
Affiliation(s)
- Aleksandr Käkinen
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, Tallinn 12618, Estonia
| | | | | | | | | | | |
Collapse
|