1
|
Islam AKMM, Karim SMR, Kheya SA, Yeasmin S. Unlocking the potential of bioherbicides for sustainable and environment friendly weed management. Heliyon 2024; 10:e36088. [PMID: 39224292 PMCID: PMC11366919 DOI: 10.1016/j.heliyon.2024.e36088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 08/03/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024] Open
Abstract
Bioherbicides might be used to manage weeds as opposed to synthetic chemical herbicides, reducing environmental risks and advancing sustainable agriculture in the meantime. Bioherbicides employ different mechanisms of action to control weeds. Microbial bioherbicides may infect and damage weed plants, disrupt their growth, or produce compounds inhibiting weed development. Plant-derived bioherbicides often target specific biochemical processes crucial for weed survival. It can be applied through conventional spraying equipment, seed treatments, or soil incorporation. Bioherbicide development faces several challenges. One major hurdle is the complex diversity of weed species across different regions, requiring tailored bioherbicide solutions. The regulatory approvals for bioherbicides can be lengthy and costly, hindering widespread adoption. Scaling up production processes and ensuring product stability also pose challenges. By reducing reliance on chemical herbicides, bioherbicides can mitigate environmental pollution, protect non-target organisms, and promote sustainable agricultural practices. The development of locally adapted bioherbicides and strategic collaborations between researchers, industries, and policymakers could further enhance their prospects in a particular country. In addition, the knowledge gaps need to be addressed prior to adopting bioherbicides in agriculture. These review intended to explore the existing state of knowledge about the categories of bioherbicides, their formulation procedure, application approaches and mode of action to control weed. The bioherbicides that are currently on the market, their effects on weed physiology, and possible factors affecting their efficacy are all included in this review. Moreover, this review offers a perspective on existing challenges and future opportunities for adopting the bioherbicides in sustainable and eco-friendly agriculture.
Collapse
Affiliation(s)
| | | | - Sinthia Afsana Kheya
- Department of Agronomy, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Sabina Yeasmin
- Department of Agronomy, Bangladesh Agricultural University, Mymensingh, Bangladesh
| |
Collapse
|
2
|
Giuliani ME, Bigossi G, Lai G, Marcozzi S, Brunetti D, Malavolta M. Marine Compounds and Age-Related Diseases: The Path from Pre-Clinical Research to Approved Drugs for the Treatment of Cardiovascular Diseases and Diabetes. Mar Drugs 2024; 22:210. [PMID: 38786601 PMCID: PMC11123485 DOI: 10.3390/md22050210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024] Open
Abstract
Ageing represents a main risk factor for several pathologies. Among them, cardiovascular diseases (CVD) and type 2 diabetes mellitus (T2DM) are predominant in the elderly population and often require prolonged use of multiple drugs due to their chronic nature and the high proportion of co-morbidities. Hence, research is constantly looking for novel, effective molecules to treat CVD and T2DM with minimal side effects. Marine active compounds, holding a great diversity of chemical structures and biological properties, represent interesting therapeutic candidates to treat these age-related diseases. This review summarizes the current state of research on marine compounds for the treatment of CVD and T2DM, from pre-clinical studies to clinical investigations and approved drugs, highlighting the potential of marine compounds in the development of new therapies, together with the limitations in translating pre-clinical results into human application.
Collapse
Affiliation(s)
- Maria Elisa Giuliani
- Advanced Technology Center for Aging Research and Geriatric Mouse Clinic, IRCCS INRCA, 60121 Ancona, Italy; (M.E.G.); (G.B.); (G.L.); (S.M.)
| | - Giorgia Bigossi
- Advanced Technology Center for Aging Research and Geriatric Mouse Clinic, IRCCS INRCA, 60121 Ancona, Italy; (M.E.G.); (G.B.); (G.L.); (S.M.)
| | - Giovanni Lai
- Advanced Technology Center for Aging Research and Geriatric Mouse Clinic, IRCCS INRCA, 60121 Ancona, Italy; (M.E.G.); (G.B.); (G.L.); (S.M.)
| | - Serena Marcozzi
- Advanced Technology Center for Aging Research and Geriatric Mouse Clinic, IRCCS INRCA, 60121 Ancona, Italy; (M.E.G.); (G.B.); (G.L.); (S.M.)
| | - Dario Brunetti
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico “Carlo Besta”, 20126 Milano, Italy;
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| | - Marco Malavolta
- Advanced Technology Center for Aging Research and Geriatric Mouse Clinic, IRCCS INRCA, 60121 Ancona, Italy; (M.E.G.); (G.B.); (G.L.); (S.M.)
| |
Collapse
|
3
|
Villareal MO, Chaochaiphat T, Makbal R, Gadhi C, Isoda H. Molecular Analysis of the Melanogenesis Inhibitory Effect of Saponins-Rich Fraction of Argania spinosa Leaves Extract. Molecules 2022; 27:6762. [PMID: 36235295 PMCID: PMC9571574 DOI: 10.3390/molecules27196762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/30/2022] [Accepted: 10/06/2022] [Indexed: 11/17/2022] Open
Abstract
Plant saponins are abundant and diverse natural products with a great potential for use in drug-discovery research. Here, we evaluated extracts of saponins-rich fractions of argan leaves and argan oil extraction byproducts (shell, pulp, press cake) for their effect on melanogenesis. Results show that from among the samples tested, only the saponins-rich fraction from leaves (ALS) inhibited melanin production in B16 murine melanoma (B16) cells. The mechanism of the melanogenesis inhibition was elucidated by determining the protein and mRNA expression of melanogenesis-associated enzymes tyrosinase (TYR), tyrosinase-related protein 1 (TRP1), and dopachrome tautomerase (DCT), and microphthalmia-associated transcription factor (MITF), and performing DNA microarray analysis. Results showed that 10 µg/mL ALS significantly inhibited melanogenesis in B16 cells and human epidermal melanocytes by 59% and 48%, respectively, without cytotoxicity. The effect of ALS on melanogenesis can be attributed to the decrease in TYR, TRP1, and MITF expression at the protein and mRNA levels. MITF inhibition naturally led to the downregulation of the expression of Tyr and Trp1 genes. Results of the DNA microarray analysis revealed the effect on melanogenesis-associated cAMP and Wnt signaling pathways' genes. The results of this study suggest that ALS may be used in cosmeceuticals preparations for hyperpigmentation treatment.
Collapse
Affiliation(s)
- Myra O. Villareal
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba City 305-8572, Ibaraki, Japan
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tennodai 1-1-1, Tsukuba City 305-8572, Ibaraki, Japan
| | - Thanyanan Chaochaiphat
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba City 305-8572, Ibaraki, Japan
| | - Rachida Makbal
- Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
| | - Chemseddoha Gadhi
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tennodai 1-1-1, Tsukuba City 305-8572, Ibaraki, Japan
- Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
- Agrobiotechnology and Bioengineering Center, CNRST-labeled Research Unit (AgroBiotech-URL-CNRST-05 Center), Cadi Ayyad University, Marrakesh 40000, Morocco
| | - Hiroko Isoda
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba City 305-8572, Ibaraki, Japan
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tennodai 1-1-1, Tsukuba City 305-8572, Ibaraki, Japan
| |
Collapse
|
4
|
Sochacki M, Vogt O. Triterpenoid Saponins from Washnut ( Sapindus mukorossi Gaertn.)-A Source of Natural Surfactants and Other Active Components. PLANTS (BASEL, SWITZERLAND) 2022; 11:2355. [PMID: 36145756 PMCID: PMC9502486 DOI: 10.3390/plants11182355] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 11/25/2022]
Abstract
Sapindus mukorossi Gaertn., also called the washnut, is a tropical tree of the Sapindaceae family. The plant owes its name to its cleaning and washing properties used by the local population as a natural detergent. The most important ingredients of the plant are triterpenoid saponins contained in many parts of the plant, inducing fruits, galls, or roots. The tree also contains other valuable, biologically active compounds that are obtained by extraction methods. Raw or purified extract and isolated saponins are valuable plant products that can be used in the food, pharmaceutical, cosmetic, and chemical industries. This review includes the most important biological and surfactant properties of extracts and isolated saponins obtained from various parts of the plant.
Collapse
Affiliation(s)
- Mateusz Sochacki
- Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland
| | | |
Collapse
|
5
|
Lin NS, Kitamura M, Saito M, Hirayama K, Ide Y, Umemura K. Distinguishing Antioxidant Molecules with Near-Infrared Photoluminescence of DNA-Wrapped Single-Walled Carbon Nanotubes. ACS OMEGA 2022; 7:28896-28903. [PMID: 36033714 PMCID: PMC9404167 DOI: 10.1021/acsomega.2c02038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
In this study, two biomolecule solutions were distinguished using the capacity difference in the near-infrared photoluminescence (PL) of single-walled carbon nanotubes (SWNTs). Biosensing techniques using sensitive responses of SWNTs have been intensively studied. When a small amount of an oxidant or reductant solution was injected into the SWNT suspensions, the PL intensity of the SWNTs is significantly changed. However, distinguishing between different molecules remains challenging. In this study, we comparably injected saponin and banana solutions, which are known antioxidant chemicals, into an SWNT suspension. The SWNTs were solubilized by wrapping them with DNA molecules. The results show that 69.1 and 155.2% increases of PL intensities of SWNTs were observed after injection of 20 and 59 μg/mL saponin solutions, respectively. Subsequently, the increase in PL was saturated. With the banana solution, 18.1 and 175.4% increases in PL intensities were observed with 20 and 59 μg/mL banana solutions, respectively. Based on these results, the two antioxidant molecules could be distinguished based on the different PL responses of the SWNTs. In addition, the much higher saturated PL intensities observed with the banana solution suggests that the banana solution increased the capacity of the PL increase for the same SWNT suspension. These results provide helpful information for establishing biosensing applications of SWNTs, particularly for distinguishing chemicals.
Collapse
|
6
|
Cartabia A, Tsiokanos E, Tsafantakis N, Lalaymia I, Termentzi A, Miguel M, Fokialakis N, Declerck S. The Arbuscular Mycorrhizal Fungus Rhizophagus irregularis MUCL 41833 Modulates Metabolites Production of Anchusa officinalis L. Under Semi-Hydroponic Cultivation. FRONTIERS IN PLANT SCIENCE 2021; 12:724352. [PMID: 34539717 PMCID: PMC8443025 DOI: 10.3389/fpls.2021.724352] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 07/27/2021] [Indexed: 06/01/2023]
Abstract
Anchusa officinalis is recognized for its therapeutic properties, which are attributed to the production of different metabolites. This plant interacts with various microorganisms, including the root symbiotic arbuscular mycorrhizal fungi (AMF). Whether these fungi play a role in the metabolism of A. officinalis is unknown. In the present study, two independent experiments, associating A. officinalis with the AMF Rhizophagus irregularis MUCL 41833, were conducted in a semi-hydroponic (S-H) cultivation system. The experiments were intended to investigate the primary and secondary metabolites (PMs and SMs, respectively) content of shoots, roots, and exudates of mycorrhized (M) and non-mycorrhized (NM) plants grown 9 (Exp. 1) or 30 (Exp. 2) days in the S-H cultivation system. Differences in the PMs and SMs were evaluated by an untargeted ultrahigh-performance liquid chromatography high-resolution mass spectrometry metabolomics approach combined with multivariate data analysis. Differences in metabolite production were shown in Exp. 1. Volcano-plots analysis revealed a strong upregulation of 10 PMs and 23 SMs. Conversely, in Exp. 2, no significant differences in PMs and SMs were found in shoots or roots between M and NM plants whereas the coumarin scoparone and the furanocoumarin byakangelicin, accumulated in the exudates of the M plants. In Exp. 1, we noticed an enhanced production of PMs, including organic acids and amino acids, with the potential to act as precursors of other amino acids and as building blocks for the production of macromolecules. Similarly, SMs production was significantly affected in Exp 1. In particular, the phenolic compounds derived from the phenylpropanoid pathway. Fifteen di-, tri-, and tetra-meric C6-C3 derivatives of caffeic acid were induced mainly in the roots of M plants, while four oleanane-types saponins were accumulated in the shoots of M plants. Two new salvianolic acid B derivatives and one new rosmarinic acid derivative, all presenting a common substitution pattern (methylation at C-9"' and C-9' and hydroxylation at C-8), were detected in the roots of M plants. The accumulation of diverse compounds observed in colonized plants suggested that AMF have the potential to affect specific plant biosynthetic pathways.
Collapse
Affiliation(s)
- Annalisa Cartabia
- Applied Microbiology, Mycology, Earth and Life Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Evangelia Tsiokanos
- Department of Pharmacognosy and Natural Product Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos Tsafantakis
- Department of Pharmacognosy and Natural Product Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Ismahen Lalaymia
- Applied Microbiology, Mycology, Earth and Life Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Aikaterini Termentzi
- Laboratory of Pesticides' Toxicology, Department of Pesticides Control and Phytopharmacy, Benaki Phytopathological Institute, Athens, Greece
| | - Maria Miguel
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Oeiras, Portugal
| | - Nikolas Fokialakis
- Department of Pharmacognosy and Natural Product Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Stéphane Declerck
- Applied Microbiology, Mycology, Earth and Life Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
7
|
Norvienyeku J, Lin L, Waheed A, Chen X, Bao J, Aliyu SR, Lin L, Shabbir A, Batool W, Zhong Z, Zhou J, Lu G, Wang Z. Bayogenin 3-O-cellobioside confers non-cultivar-specific defence against the rice blast fungus Pyricularia oryzae. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:589-601. [PMID: 33043566 PMCID: PMC7955875 DOI: 10.1111/pbi.13488] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 09/27/2020] [Indexed: 05/06/2023]
Abstract
Rice cultivars from japonica and indica lineage possess differential resistance against blast fungus as a result of genetic divergence. Whether different rice cultivars also show distinct metabolomic changes in response to P. oryzae, and their role in host resistance, are poorly understood. Here, we examine the responses of six different rice cultivars from japonica and indica lineage challenged with P. oryzae. Both susceptible and resistant rice cultivars expressed several metabolites exclusively during P. oryzae infection, including the saponin Bayogenin 3-O-cellobioside. Bayogenin 3-O-cellobioside level in infected rice directly correlated with their resistant attributes. These findings reveal, for the first time to our knowledge that besides oat, other grass plants including rice produces protective saponins. Our study provides insight into the role of pathogen-mediated metabolomics reprogramming in host immunity. The correlation between Bayogenin 3-O-Cellobioside levels and blast resistance suggests that engineering saponin expression in cereal crops represents attractive and sustainable disease management.
Collapse
Affiliation(s)
- Justice Norvienyeku
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & Ministry of Education Key Laboratory of Biopesticides and Chemical BiologyCollege of Life SciencesFujian Agriculture and Forestry UniversityFuzhouChina
| | - Lili Lin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & Ministry of Education Key Laboratory of Biopesticides and Chemical BiologyCollege of Life SciencesFujian Agriculture and Forestry UniversityFuzhouChina
| | - Abdul Waheed
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & Ministry of Education Key Laboratory of Biopesticides and Chemical BiologyCollege of Life SciencesFujian Agriculture and Forestry UniversityFuzhouChina
| | - Xiaomin Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & Ministry of Education Key Laboratory of Biopesticides and Chemical BiologyCollege of Life SciencesFujian Agriculture and Forestry UniversityFuzhouChina
| | - Jiandong Bao
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & Ministry of Education Key Laboratory of Biopesticides and Chemical BiologyCollege of Life SciencesFujian Agriculture and Forestry UniversityFuzhouChina
| | - Sami Rukaiya Aliyu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & Ministry of Education Key Laboratory of Biopesticides and Chemical BiologyCollege of Life SciencesFujian Agriculture and Forestry UniversityFuzhouChina
| | - Lianyu Lin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & Ministry of Education Key Laboratory of Biopesticides and Chemical BiologyCollege of Life SciencesFujian Agriculture and Forestry UniversityFuzhouChina
| | - Ammarah Shabbir
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & Ministry of Education Key Laboratory of Biopesticides and Chemical BiologyCollege of Life SciencesFujian Agriculture and Forestry UniversityFuzhouChina
| | - Wajjiha Batool
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & Ministry of Education Key Laboratory of Biopesticides and Chemical BiologyCollege of Life SciencesFujian Agriculture and Forestry UniversityFuzhouChina
| | - Zhenhui Zhong
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & Ministry of Education Key Laboratory of Biopesticides and Chemical BiologyCollege of Life SciencesFujian Agriculture and Forestry UniversityFuzhouChina
| | - Jie Zhou
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & Ministry of Education Key Laboratory of Biopesticides and Chemical BiologyCollege of Life SciencesFujian Agriculture and Forestry UniversityFuzhouChina
| | - Guodong Lu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & Ministry of Education Key Laboratory of Biopesticides and Chemical BiologyCollege of Life SciencesFujian Agriculture and Forestry UniversityFuzhouChina
| | - Zonghua Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & Ministry of Education Key Laboratory of Biopesticides and Chemical BiologyCollege of Life SciencesFujian Agriculture and Forestry UniversityFuzhouChina
- Institute of OceanographyMinjiang UniversityFuzhouChina
| |
Collapse
|
8
|
Feriani A, Tir M, Hachani R, Gómez-Caravaca AM, Contreras MDM, Taamalli A, Talhaoui N, Segura-Carretero A, Ghazouani L, Mufti A, Tlili N, El Feki A, Harrath AH, Allagui MS. Zygophyllum album saponins prevent atherogenic effect induced by deltamethrin via attenuating arterial accumulation of native and oxidized LDL in rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 193:110318. [PMID: 32105945 DOI: 10.1016/j.ecoenv.2020.110318] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 02/06/2020] [Accepted: 02/07/2020] [Indexed: 06/10/2023]
Abstract
The current study aimed to examine, for the first time, the relationship between exposure to deltamethrin (DLM) and atherogenic lipid profile disorders in adult Wistar rats, as well as, to verify the mechanism of the beneficial role of Zygophyllum album leaves extracts (ZALE). The experimental study was assessed using DLM (4 mg/kg b.w) either alone or co administered with ZALE (400 mg/kg b.w) orally for 90 days in rats. RP-HPLC-DAD-ESI-QTOF-MS was used to identify the bioactive metabolites present in ZALE. Plasmatic and aortic total cholesterol (TC), LDL-cholesterol (LDL-C), native LDL (LDL-apo B-100) and oxidized LDL (ox-LDL) were evaluated using auto-analyzer and a sandwich ELISA, respectively. The protein expressions of LDLR (native LDL receptor) and CD36 (Scavenger receptor class B) were evaluated in aorta or liver with a Western blot. The pathology has been confirmed with lipid stain (Oil Red O). Phytochemicals analysis revealed the presence of fifteen saponins in ZALE. Rats intoxicated with DLM revealed a significant increase in plasmatic and aortic lipid profile (TC, LDL-C, LDL-apo B-100 and ox-LDL), as well as, the concentration of the plasmatic cytokines include TNF-α, IL-2 and IL-6, compared to control. Hepatic native LDL and aortic CD36 receptor expression were increased in DLM treated group, however aortic LDL-R does not present any modification, when compared to control. The detected disturbances in lipid parameters were supported by Oil Red O applied. Due to their antioxidant activity, the bioactive compounds in ZALE as powerful agents able to prevent the pro-atherogenic effect observed in DLM-treated animals. These metabolites modulated most of inflammatory markers, prevented accumulation of lipid and lipoprotein biomarkers, regulated the major receptor regulators of hepatic cholesterol metabolism, as well as normalize lipid distribution in liver and aorta tissue.
Collapse
Affiliation(s)
- Anouar Feriani
- Research Unit of Macromolecular Biochemistry and Genetics, Faculty of Sciences of Gafsa, 2112, Gafsa, Tunisia.
| | - Meriam Tir
- Laboratoire des Sciences de l'Environnement, Biologie et Physiologie des Organismes Aquatiques, LR18ES41, Faculté des Sciences de Tunis, Université Tunis EL Manar, 2092, Tunis, Tunisia
| | - Rafik Hachani
- Université de Carthage, Unité de Physiologie Intégrée, Laboratoire de Pathologies Vasculaires, Faculté des Sciences de Bizerte, 7021, Jarzouna, Tunisia; Laboratoire d'Etude de la Microcirculation (EA 3509), Faculté de Médecine Lariboisière-St. Louis, Université Paris VII, France
| | - Ana María Gómez-Caravaca
- Department of Analytical Chemistry, University of Granada, Avda. Fuentenueva s/n, 18071, Granada, Spain; Research and Development of Functional Food Centre (CIDAF), PTS Granada, Avda. del Conocimiento s/n, Edificio Bioregión, 18016, Granada, Spain
| | - María Del Mar Contreras
- Department of Analytical Chemistry, University of Granada, Avda. Fuentenueva s/n, 18071, Granada, Spain; Department of Chemical, Environmental and Materials Engineering, Universidad de Jaén, Campus Las Lagunillas, 23071, Jaén, Spain
| | - Amani Taamalli
- Department of Chemistry, College of Sciences, University of Hafr Al Batin, P.O Box 1803, Hafr Al-Batin 31991, Saudi Arabia
| | - Nassima Talhaoui
- Department of Analytical Chemistry, University of Granada, Avda. Fuentenueva s/n, 18071, Granada, Spain; Research and Development of Functional Food Centre (CIDAF), PTS Granada, Avda. del Conocimiento s/n, Edificio Bioregión, 18016, Granada, Spain
| | - Antonio Segura-Carretero
- Department of Analytical Chemistry, University of Granada, Avda. Fuentenueva s/n, 18071, Granada, Spain; Research and Development of Functional Food Centre (CIDAF), PTS Granada, Avda. del Conocimiento s/n, Edificio Bioregión, 18016, Granada, Spain
| | - Lakhdar Ghazouani
- Research Unit of Macromolecular Biochemistry and Genetics, Faculty of Sciences of Gafsa, 2112, Gafsa, Tunisia
| | - Afoua Mufti
- Research Unit of Macromolecular Biochemistry and Genetics, Faculty of Sciences of Gafsa, 2112, Gafsa, Tunisia
| | - Nizar Tlili
- Département de Biologie, Faculté des Sciences de Tunis, Université Tunis El-Manar, Tunis, 2092, Tunisia; Institut Supérieur des Sciences et Technologies de l'Environnement, Université de Carthage, Tunisia.
| | - Abdelfattah El Feki
- Laboratory of Animal Ecophysiology, Faculty of Science of Sfax, 3018, Sfax, Tunisia
| | - Abdel Halim Harrath
- King Saud University, Department of Zoology, College of Science, Riyadh, 11451, Saudi Arabia
| | | |
Collapse
|
9
|
Sundaramoorthy J, Park GT, Komagamine K, Tsukamoto C, Chang JH, Lee JD, Kim JH, Seo HS, Song JT. Biosynthesis of DDMP saponins in soybean is regulated by a distinct UDP-glycosyltransferase. THE NEW PHYTOLOGIST 2019; 222:261-274. [PMID: 30414191 DOI: 10.1111/nph.15588] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Accepted: 11/05/2018] [Indexed: 06/08/2023]
Abstract
2,3-Dihydro-2,5-dihydroxy-6-methyl-4H-pyran-4-one (DDMP) saponins are one of the major saponin groups that are widely distributed in legumes such as pea, barrel medic, chickpea, and soybean. The steps involved in DDMP saponin biosynthesis remain uncharacterized at the molecular level. We isolated two recessive mutants that lack DDMP saponins from an ethyl methanesulfonate-induced mutant population of soybean cultivar Pungsannamul. Segregation analysis showed that the production of DDMP saponins is controlled by a single locus, named Sg-9. The locus was physically mapped to a 130-kb region on chromosome 16. Nucleotide sequence analysis of candidate genes in the region revealed that each mutant has a single-nucleotide polymorphism in the Glyma.16G033700 encoding a UDP-glycosyltransferase UGT73B4. Enzyme assays and mass spectrum-coupled chromatographic analysis reveal that the Sg-9 protein has glycosyltransferase activity, converting sapogenins and group B saponins to glycosylated products, and that mutant proteins had only partial activities. The tissue-specific expression profile of Sg-9 matches the accumulation pattern of DDMP saponins. This is the first report on a new gene and its function in the biosynthesis of DDMP saponins. Our findings indicate that Sg-9 encodes a putative DDMP transferase that plays a critical role in the biosynthesis of DDMP saponins.
Collapse
Affiliation(s)
| | - Gyu Tae Park
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Korea
| | - Kumpei Komagamine
- Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate, 020-8550, Japan
| | - Chigen Tsukamoto
- Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate, 020-8550, Japan
| | - Jeong Ho Chang
- Department of Biology Education, Kyungpook National University, Daegu, 41566, Korea
| | - Jeong-Dong Lee
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Korea
| | - Jeong Hoe Kim
- Department of Biology, Kyungpook National University, Daegu, 41566, Korea
| | - Hak Soo Seo
- Department of Plant Bioscience, Seoul National University, Seoul, 08826, Korea
| | - Jong Tae Song
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Korea
| |
Collapse
|