1
|
Koutsofti C, Ioannides M, Polydorou C, Papagregoriou G, Malatras A, Michael G, Hadjiioannou I, Pieri S, Loizidou EM, Eftychiou C, Papasavvas E, Christophides T, Alkelai A, Kapoor M, Shuldiner AR, Avraamides P, Deltas C. Massive Parallel DNA Sequencing of Patients with Inherited Cardiomyopathies in Cyprus and Suggestion of Digenic or Oligogenic Inheritance. Genes (Basel) 2024; 15:319. [PMID: 38540378 PMCID: PMC10970479 DOI: 10.3390/genes15030319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 06/14/2024] Open
Abstract
Inherited cardiomyopathies represent a highly heterogeneous group of cardiac diseases. DNA variants in genes expressed in cardiomyocytes cause a diverse spectrum of cardiomyopathies, ultimately leading to heart failure, arrythmias, and sudden cardiac death. We applied massive parallel DNA sequencing using a 72-gene panel for studying inherited cardiomyopathies. We report on variants in 25 families, where pathogenicity was predicted by different computational approaches, databases, and an in-house filtering analysis. All variants were validated using Sanger sequencing. Familial segregation was tested when possible. We identified 41 different variants in 26 genes. Analytically, we identified fifteen variants previously reported in the Human Gene Mutation Database: twelve mentioned as disease-causing mutations (DM) and three as probable disease-causing mutations (DM?). Additionally, we identified 26 novel variants. We classified the forty-one variants as follows: twenty-eight (68.3%) as variants of uncertain significance, eight (19.5%) as likely pathogenic, and five (12.2%) as pathogenic. We genetically characterized families with a cardiac phenotype. The genetic heterogeneity and the multiplicity of candidate variants are making a definite molecular diagnosis challenging, especially when there is a suspicion of incomplete penetrance or digenic-oligogenic inheritance. This is the first systematic study of inherited cardiac conditions in Cyprus, enabling us to develop a genetic baseline and precision cardiology.
Collapse
Affiliation(s)
- Constantina Koutsofti
- Molecular Medicine Research Center, biobank.cy Center of Excellence in Biobanking and Biomedical Research, University of Cyprus, Nicosia 2109, Cyprus; (C.K.); (C.P.); (G.P.); (A.M.); (G.M.); (I.H.); (S.P.); (E.M.L.)
| | - Marios Ioannides
- Department of Cardiology, Nicosia General Hospital, Nicosia 2029, Cyprus; (M.I.); (C.E.); (T.C.)
| | - Christiana Polydorou
- Molecular Medicine Research Center, biobank.cy Center of Excellence in Biobanking and Biomedical Research, University of Cyprus, Nicosia 2109, Cyprus; (C.K.); (C.P.); (G.P.); (A.M.); (G.M.); (I.H.); (S.P.); (E.M.L.)
| | - Gregory Papagregoriou
- Molecular Medicine Research Center, biobank.cy Center of Excellence in Biobanking and Biomedical Research, University of Cyprus, Nicosia 2109, Cyprus; (C.K.); (C.P.); (G.P.); (A.M.); (G.M.); (I.H.); (S.P.); (E.M.L.)
| | - Apostolos Malatras
- Molecular Medicine Research Center, biobank.cy Center of Excellence in Biobanking and Biomedical Research, University of Cyprus, Nicosia 2109, Cyprus; (C.K.); (C.P.); (G.P.); (A.M.); (G.M.); (I.H.); (S.P.); (E.M.L.)
| | - George Michael
- Molecular Medicine Research Center, biobank.cy Center of Excellence in Biobanking and Biomedical Research, University of Cyprus, Nicosia 2109, Cyprus; (C.K.); (C.P.); (G.P.); (A.M.); (G.M.); (I.H.); (S.P.); (E.M.L.)
| | - Irene Hadjiioannou
- Molecular Medicine Research Center, biobank.cy Center of Excellence in Biobanking and Biomedical Research, University of Cyprus, Nicosia 2109, Cyprus; (C.K.); (C.P.); (G.P.); (A.M.); (G.M.); (I.H.); (S.P.); (E.M.L.)
| | - Stylianos Pieri
- Molecular Medicine Research Center, biobank.cy Center of Excellence in Biobanking and Biomedical Research, University of Cyprus, Nicosia 2109, Cyprus; (C.K.); (C.P.); (G.P.); (A.M.); (G.M.); (I.H.); (S.P.); (E.M.L.)
| | - Eleni M. Loizidou
- Molecular Medicine Research Center, biobank.cy Center of Excellence in Biobanking and Biomedical Research, University of Cyprus, Nicosia 2109, Cyprus; (C.K.); (C.P.); (G.P.); (A.M.); (G.M.); (I.H.); (S.P.); (E.M.L.)
| | - Christos Eftychiou
- Department of Cardiology, Nicosia General Hospital, Nicosia 2029, Cyprus; (M.I.); (C.E.); (T.C.)
| | | | - Theodoros Christophides
- Department of Cardiology, Nicosia General Hospital, Nicosia 2029, Cyprus; (M.I.); (C.E.); (T.C.)
| | - Anna Alkelai
- Regeneron Genetics Center, Tarrytown, NY 10591, USA; (A.A.); (M.K.); (A.R.S.)
| | - Manav Kapoor
- Regeneron Genetics Center, Tarrytown, NY 10591, USA; (A.A.); (M.K.); (A.R.S.)
| | - Alan R. Shuldiner
- Regeneron Genetics Center, Tarrytown, NY 10591, USA; (A.A.); (M.K.); (A.R.S.)
| | - Panayiotis Avraamides
- Department of Cardiology, Nicosia General Hospital, Nicosia 2029, Cyprus; (M.I.); (C.E.); (T.C.)
| | - Constantinos Deltas
- Molecular Medicine Research Center, biobank.cy Center of Excellence in Biobanking and Biomedical Research, University of Cyprus, Nicosia 2109, Cyprus; (C.K.); (C.P.); (G.P.); (A.M.); (G.M.); (I.H.); (S.P.); (E.M.L.)
- School of Medicine, University of Cyprus, Nicosia 2109, Cyprus
| |
Collapse
|
2
|
Deltas C, Papagregoriou G, Louka SF, Malatras A, Flinter F, Gale DP, Gear S, Gross O, Hoefele J, Lennon R, Miner JH, Renieri A, Savige J, Turner AN. Genetic Modifiers of Mendelian Monogenic Collagen IV Nephropathies in Humans and Mice. Genes (Basel) 2023; 14:1686. [PMID: 37761826 PMCID: PMC10530214 DOI: 10.3390/genes14091686] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/09/2023] [Accepted: 08/17/2023] [Indexed: 09/29/2023] Open
Abstract
Familial hematuria is a clinical sign of a genetically heterogeneous group of conditions, accompanied by broad inter- and intrafamilial variable expressivity. The most frequent condition is caused by pathogenic (or likely pathogenic) variants in the collagen-IV genes, COL4A3/A4/A5. Pathogenic variants in COL4A5 are responsible for the severe X-linked glomerulopathy, Alport syndrome (AS), while homozygous or compound heterozygous variants in the COL4A3 or the COL4A4 gene cause autosomal recessive AS. AS usually leads to progressive kidney failure before the age of 40-years when left untreated. People who inherit heterozygous COL4A3/A4 variants are at-risk of a slowly progressive form of the disease, starting with microscopic hematuria in early childhood, developing Alport spectrum nephropathy. Sometimes, they are diagnosed with benign familial hematuria, and sometimes with autosomal dominant AS. At diagnosis, they often show thin basement membrane nephropathy, reflecting the uniform thin glomerular basement membrane lesion, inherited as an autosomal dominant condition. On a long follow-up, most patients will retain normal or mildly affected kidney function, while a substantial proportion will develop chronic kidney disease (CKD), even kidney failure at an average age of 55-years. A question that remains unanswered is how to distinguish those patients with AS or with heterozygous COL4A3/A4 variants who will manifest a more aggressive kidney function decline, requiring prompt medical intervention. The hypothesis that a subgroup of patients coinherit additional genetic modifiers that exacerbate their clinical course has been investigated by several researchers. Here, we review all publications that describe the potential role of candidate genetic modifiers in patients and include a summary of studies in AS mouse models.
Collapse
Affiliation(s)
- Constantinos Deltas
- School of Medicine, University of Cyprus, Nicosia 2109, Cyprus
- biobank.cy Center of Excellence in Biobanking and Biomedical Research, University of Cyprus, Nicosia 2109, Cyprus
| | - Gregory Papagregoriou
- biobank.cy Center of Excellence in Biobanking and Biomedical Research, University of Cyprus, Nicosia 2109, Cyprus
| | - Stavroula F. Louka
- biobank.cy Center of Excellence in Biobanking and Biomedical Research, University of Cyprus, Nicosia 2109, Cyprus
| | - Apostolos Malatras
- biobank.cy Center of Excellence in Biobanking and Biomedical Research, University of Cyprus, Nicosia 2109, Cyprus
| | - Frances Flinter
- Clinical Genetics Department, Guy’s & St Thomas’ NHS Foundation Trust, London SE1 9RT, UK
| | - Daniel P. Gale
- Department of Renal Medicine, University College London, London NW3 2PF, UK
| | | | - Oliver Gross
- Clinic for Nephrology and Rheumatology, University Medicine Goettingen, 37075 Goettingen, Germany
| | - Julia Hoefele
- Institute of Human Genetics, Klinikum Rechts der Isar, School of Medicine & Health, Technical University Munich, 81675 Munich, Germany
| | - Rachel Lennon
- Wellcome Centre for Cell-Matrix Research, University of Manchester, Manchester M13 9WU, UK
| | - Jeffrey H. Miner
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Alessandra Renieri
- Medical Genetics, University of Siena, 53100 Siena, Italy
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
- Genetica Medica, Azienda Ospedaliero-Universitaria Senese, 53100 Siena, Italy
| | - Judy Savige
- Department of Medicine (Melbourne Health and Northern Health), The University of Melbourne, Parkville, VIC 3052, Australia
| | - A. Neil Turner
- Renal Medicine, Royal Infirmary, University of Edinburgh, Edinburgh EH16 4UX, UK
| |
Collapse
|
3
|
Lucientes-Continente L, Márquez-Tirado B, Goicoechea de Jorge E. The Factor H protein family: The switchers of the complement alternative pathway. Immunol Rev 2023; 313:25-45. [PMID: 36382387 PMCID: PMC10099856 DOI: 10.1111/imr.13166] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The factor H (FH) protein family is emerging as a complex network of proteins controlling the fate of the complement alternative pathway (AP) and dictating susceptibility to a wide range of diseases including infectious, inflammatory, autoimmune, and degenerative diseases and cancer. Composed, in man, of seven highly related proteins, FH, factor H-like 1, and 5 factor H-related proteins, some of the FH family proteins are devoted to down-regulating the AP, while others exert an opposite function by promoting AP activation. Recent findings have provided insights into the molecular mechanisms defining their biological roles and their pathogenicity, illustrating the relevance that the balance between the regulators and the activators within this protein family has in defining the outcome of complement activation on cell surfaces. In this review we will discuss the emerging roles of the factor H protein family, their impact in the complement cascade, and their involvement in the pathogenesis of complement-mediated diseases associated with the AP dysregulation.
Collapse
Affiliation(s)
- Laura Lucientes-Continente
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University and Research Institute Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Bárbara Márquez-Tirado
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University and Research Institute Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Elena Goicoechea de Jorge
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University and Research Institute Hospital 12 de Octubre (imas12), Madrid, Spain
| |
Collapse
|
4
|
Frangou E, Varnavidou-Nicolaidou A, Petousis P, Soloukides A, Theophanous E, Savva I, Michael N, Toumasi E, Georgiou D, Stylianou G, Mean R, Anastasiadou N, Athanasiou Y, Zavros M, Kyriacou K, Deltas C, Hadjianastassiou V. Clinical course and outcome after kidney transplantation in patients with C3 glomerulonephritis due to CFHR5 nephropathy. Nephrol Dial Transplant 2019; 34:1780-1788. [PMID: 30844074 DOI: 10.1093/ndt/gfz021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 01/17/2019] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Complement factor H-related protein 5 (CFHR5) nephropathy is an inherited renal disease characterized by microscopic and synpharyngitic macroscopic haematuria, C3 glomerulonephritis and renal failure. It is caused by an internal duplication of exons 2-3 within the CFHR5 gene resulting in dysregulation of the alternative complement pathway. The clinical characteristics and outcomes of transplanted patients with this rare familial nephropathy remain unknown. METHODS This is a retrospective case series study of 17 kidney transplant patients with the established founder mutation, followed-up over a span of 30 years. RESULTS The mean (±SD) age of patients at the time of the study and at transplantation was 58.6 ± 9.9 and 46.7 ± 8.8 years, respectively. The 10- and 15-year patient survival rates were 100 and 77.8%, respectively. Proteinuria was present in 33.3% and microscopic haematuria in 58.3% of patients with a functional graft. Serum complement levels were normal in all. 'Confirmed' and 'likely' recurrence of CFHR5 nephropathy were 16.6 and 52.9%, respectively; however, 76.5% of patients had a functional graft after a median of 120 months post-transplantation. Total recurrence was not associated with graft loss (P = 0.171), but was associated with the presence of microscopic haematuria (P = 0.001) and proteinuria (P = 0.018). Graft loss was associated with the presence of proteinuria (P = 0.025). CONCLUSIONS We describe for the first time the clinical characteristics and outcome of patients with CFHR5 nephropathy post-transplantation. Despite the recurrence of CFHR5 nephropathy, we provide evidence for a long-term favourable outcome and support the continued provision of kidney transplantation as a renal replacement option in patients with CFHR5 nephropathy.
Collapse
Affiliation(s)
- Eleni Frangou
- Department of Nephrology and Transplantation, Nicosia General Hospital, Nicosia, Cyprus.,Medical School, University of Cyprus, Nicosia, Cyprus.,Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | | | | | - Andreas Soloukides
- Department of Nephrology and Transplantation, Nicosia General Hospital, Nicosia, Cyprus.,Medical School, University of Cyprus, Nicosia, Cyprus
| | - Elena Theophanous
- Department of Histopathology, Nicosia General Hospital, Nicosia, Cyprus
| | - Isavella Savva
- Department of Nephrology and Transplantation, Nicosia General Hospital, Nicosia, Cyprus.,Molecular Medicine Research Center, Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - Nicos Michael
- Department of Nephrology and Transplantation, Nicosia General Hospital, Nicosia, Cyprus.,Medical School, University of Nicosia, Nicosia, Cyprus
| | - Elpida Toumasi
- Department of Nephrology and Transplantation, Nicosia General Hospital, Nicosia, Cyprus.,Medical School, University of Cyprus, Nicosia, Cyprus
| | - Dora Georgiou
- Histocompatibility and Immunogenetics Laboratory, Nicosia General Hospital, Nicosia, Cyprus
| | - Galatia Stylianou
- Histocompatibility and Immunogenetics Laboratory, Nicosia General Hospital, Nicosia, Cyprus
| | - Richard Mean
- Histocompatibility and Immunogenetics Laboratory, Nicosia General Hospital, Nicosia, Cyprus
| | | | - Yiannis Athanasiou
- Department of Nephrology and Transplantation, Nicosia General Hospital, Nicosia, Cyprus.,Medical School, University of Cyprus, Nicosia, Cyprus
| | - Michalis Zavros
- Department of Nephrology and Transplantation, Nicosia General Hospital, Nicosia, Cyprus
| | - Kyriacos Kyriacou
- Department of Electron Microscopy, Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Constantinos Deltas
- Molecular Medicine Research Center, Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - Vassilis Hadjianastassiou
- Department of Nephrology and Transplantation, Nicosia General Hospital, Nicosia, Cyprus.,Medical School, University of Nicosia, Nicosia, Cyprus
| |
Collapse
|
5
|
Hohenstein B, Amann K, Menne J. Membranoproliferative Glomerulonephritis und C3‑Glomerulopathie. Internist (Berl) 2019; 60:458-467. [DOI: 10.1007/s00108-019-0572-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
6
|
Ng MSY, McClymont K, McCallum N, Dua R, Holman K, Bennetts B, Ho G, Patel C, Mallett AJ. CFHR5 Nephropathy in a Greek-Cypriot Australian Family: Ancestry-Informed Precision Medicine. Kidney Int Rep 2018; 3:1222-1228. [PMID: 30197990 PMCID: PMC6127413 DOI: 10.1016/j.ekir.2018.04.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Affiliation(s)
- Monica S Y Ng
- Kidney Health Service, Royal Brisbane and Women's Hospital, Brisbane, Australia.,Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Kelly McClymont
- Department of Histopathology, Sullivan Nicolaides Pathology, Brisbane, Australia
| | - Naomi McCallum
- Electron Microscopy Unit, Pathology Queensland, Royal Brisbane & Women's Hospital, Brisbane, Australia
| | - Rahul Dua
- Mater Private Hospital, Townsville, Australia
| | - Katherine Holman
- Department of Molecular Genetics, The Children's Hospital at Westmead, Sydney, Australia
| | - Bruce Bennetts
- Department of Molecular Genetics, The Children's Hospital at Westmead, Sydney, Australia.,Disciplines of Genetic Medicine and Paediatrics and Child Health, The University of Sydney, Sydney, Australia
| | - Gladys Ho
- Department of Molecular Genetics, The Children's Hospital at Westmead, Sydney, Australia
| | - Chirag Patel
- Genetic Health Queensland, Royal Brisbane and Women's Hospital, Brisbane, Australia
| | - Andrew J Mallett
- Kidney Health Service, Royal Brisbane and Women's Hospital, Brisbane, Australia.,Faculty of Medicine, The University of Queensland, Brisbane, Australia
| |
Collapse
|
7
|
Kousios A. Does complement Factor H-Related protein 5 Nephropathy (Troodos Nephropathy) protect from rickettsial infections? Med Hypotheses 2017; 98:76-80. [DOI: 10.1016/j.mehy.2016.11.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 11/25/2016] [Indexed: 10/20/2022]
|
8
|
Complement 3 and metabolic syndrome induced by clozapine: a cross-sectional study and retrospective cohort analysis. THE PHARMACOGENOMICS JOURNAL 2015; 17:92-97. [PMID: 26503818 DOI: 10.1038/tpj.2015.68] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Revised: 08/03/2015] [Accepted: 08/19/2015] [Indexed: 01/06/2023]
Abstract
Metabolic syndrome (MetS) is considered to be an adverse effect of long-term treatment with atypical antipsychotics, particularly clozapine. There is strong evidence that the activation of inflammatory pathways interferes with normal metabolism and contributes to the development of MetS. C3, which is an inflammation molecule, has been reported to be associated with MetS. Because C3 is a heritable trait, we accordingly hypothesized that the gene encoding C3 (C3) would be a candidate gene for inter-individual variation in clozapine-induced MetS. We recruited 576 schizophrenia patients taking clozapine and measured the serum levels of fasting metabolic parameters. We then examined C3 mRNA and genotyped seven polymorphisms in C3. The expression quantitative trait locus (eQTL) data available for tissues were extracted by the Genotype-Tissue Expression Portal. A total of 105 patients' medical records were retrospectively reviewed to obtain the metabolic parameters during the initial 2-year clozapine treatment. The relative expression levels of C3 mRNA in patients with MetS were significantly higher than in those without MetS (P=0.02). C3 single-nucleotide polymorphism (SNP) rs2277984 was marginally associated with MetS (allelic P=0.06, odds ratio=1.36, 95% confidence interval (CI): 1.07-1.72). We found a significant association of rs2277984 with fasting triglyceride (TG) levels (P=0.004). Further, eQTL analysis revealed that rs2277984 regulates C3 expression in the liver (P=0.002). Similar results were found in the retrospective cohort analysis. The receiver operating characteristic curve showed a significant effect of the rs2277984 G allele on the percentage change of TG levels, with an area under the curve of 0.71 (95% CI: 0.60-0.81). C3 is likely to enhance TG accumulation and to confer susceptibility to clozapine-induced MetS. The C3 SNP rs2277984 may be a potential biomarker for predicting MetS risk in patients receiving clozapine treatment.
Collapse
|
9
|
Abstract
'Membranoproliferative' describes glomerular injury characterized by capillary wall thickening and mesangial expansion owing to increased matrix deposition and hypercellularity. The presence of immune deposits is indicative of membranoproliferative glomerulonephritis (MPGN). Historically, MPGN was further classified into three types according to the appearance and site of the electron-dense deposits seen by electron microscopy, but it is now recognized that many cases show only deposition of the complement component C3, owing to abnormal control of the alternative pathway of complement activation-these cases are now classified as C3 glomerulopathies. Not all cases of C3 glomerulopathy, however, show an MPGN pattern. C3 glomerulopathies include dense deposit disease, which shows dense osmiophilic deposits, and C3 glomerulonephritis, which shows isolated deposits. In many cases, the genetic mutations or autoantibodies responsible for C3 deposition have been identified. Some patients in whom complement control is abnormal will accumulate small amounts of immunoglobulin in their glomeruli and so, in everyday practice, the morphological diagnosis of 'glomerulonephritis with dominant C3' is useful for identifying patients who require investigation of the complement pathway. The recognition that many cases of MPGN are C3 glomerulopathies and that the underlying cause can often be identified in immunoglobulin-associated cases means that the diagnosis of idiopathic MPGN is now very uncommon.
Collapse
Affiliation(s)
- H Terence Cook
- Centre for Complement and Inflammation Research, Department of Medicine, Imperial College, London W12 0NN, UK
| | - Matthew C Pickering
- Centre for Complement and Inflammation Research, Department of Medicine, Imperial College, London W12 0NN, UK
| |
Collapse
|
10
|
de Lorenzo A, Tallón S, Hernández-Sevillano B, de Arriba G. C3 glomerulopathy: A new complement-based entity. Rev Clin Esp 2014. [DOI: 10.1016/j.rceng.2014.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
11
|
de Lorenzo A, Tallón S, Hernández-Sevillano B, de Arriba G. Glomerulopatía C3: una nueva entidad basada en el complemento. Rev Clin Esp 2014; 214:266-74. [DOI: 10.1016/j.rce.2014.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 10/11/2013] [Accepted: 01/20/2014] [Indexed: 10/25/2022]
|
12
|
Savige J, Ars E, Cotton RGH, Crockett D, Dagher H, Deltas C, Ding J, Flinter F, Pont-Kingdon G, Smaoui N, Torra R, Storey H. DNA variant databases improve test accuracy and phenotype prediction in Alport syndrome. Pediatr Nephrol 2014; 29:971-7. [PMID: 23720012 DOI: 10.1007/s00467-013-2486-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2012] [Revised: 01/02/2013] [Accepted: 01/03/2013] [Indexed: 01/18/2023]
Abstract
X-linked Alport syndrome is a form of progressive renal failure caused by pathogenic variants in the COL4A5 gene. More than 700 variants have been described and a further 400 are estimated to be known to individual laboratories but are unpublished. The major genetic testing laboratories for X-linked Alport syndrome worldwide have established a Web-based database for published and unpublished COL4A5 variants ( https://grenada.lumc.nl/LOVD2/COL4A/home.php?select_db=COL4A5 ). This conforms with the recommendations of the Human Variome Project: it uses the Leiden Open Variation Database (LOVD) format, describes variants according to the human reference sequence with standardized nomenclature, indicates likely pathogenicity and associated clinical features, and credits the submitting laboratory. The database includes non-pathogenic and recurrent variants, and is linked to another COL4A5 mutation database and relevant bioinformatics sites. Access is free. Increasing the number of COL4A5 variants in the public domain helps patients, diagnostic laboratories, clinicians, and researchers. The database improves the accuracy and efficiency of genetic testing because its variants are already categorized for pathogenicity. The description of further COL4A5 variants and clinical associations will improve our ability to predict phenotype and our understanding of collagen IV biochemistry. The database for X-linked Alport syndrome represents a model for databases in other inherited renal diseases.
Collapse
|
13
|
Chen Q, Wiesener M, Eberhardt HU, Hartmann A, Uzonyi B, Kirschfink M, Amann K, Buettner M, Goodship T, Hugo C, Skerka C, Zipfel PF. Complement factor H-related hybrid protein deregulates complement in dense deposit disease. J Clin Invest 2013; 124:145-55. [PMID: 24334459 DOI: 10.1172/jci71866] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 10/07/2013] [Indexed: 12/16/2022] Open
Abstract
The renal disorder C3 glomerulopathy with dense deposit disease (C3G-DDD) pattern results from complement dysfunction and primarily affects children and young adults. There is no effective treatment, and patients often progress to end-stage renal failure. A small fraction of C3G-DDD cases linked to factor H or C3 gene mutations as well as autoantibodies have been reported. Here, we examined an index family with 2 patients with C3G-DDD and identified a chromosomal deletion in the complement factor H-related (CFHR) gene cluster. This deletion resulted in expression of a hybrid CFHR2-CFHR5 plasma protein. The recombinant hybrid protein stabilized the C3 convertase and reduced factor H-mediated convertase decay. One patient was refractory to plasma replacement and exchange therapy, as evidenced by the hybrid protein quickly returning to pretreatment plasma levels. Subsequently, complement inhibitors were tested on serum from the patient for their ability to block activity of CFHR2-CFHR5. Soluble CR1 restored defective C3 convertase regulation; however, neither eculizumab nor tagged compstatin had any effect. Our findings provide insight into the importance of CFHR proteins for C3 convertase regulation and identify a genetic variation in the CFHR gene cluster that promotes C3G-DDD. Monitoring copy number and sequence variations in the CFHR gene cluster in C3G-DDD and kidney patients with C3G-DDD variations will help guide treatment strategies.
Collapse
|
14
|
Deltas C, Pierides A, Voskarides K. Molecular genetics of familial hematuric diseases. Nephrol Dial Transplant 2013; 28:2946-60. [PMID: 24046192 DOI: 10.1093/ndt/gft253] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The familial hematuric diseases are a genetically heterogeneous group of monogenic conditions, caused by mutations in one of several genes. The major genes involved are the following: (i) the collagen IV genes COL4A3/A4/A5 that are expressed in the glomerular basement membranes (GBM) and are responsible for the most frequent forms of microscopic hematuria, namely Alport syndrome (X-linked or autosomal recessive) and thin basement membrane nephropathy (TBMN). (ii) The FN1 gene, expressed in the glomerulus and responsible for a rare form of glomerulopathy with fibronectin deposits (GFND). (iii) CFHR5 gene, a recently recognized regulator of the complement alternative pathway and mutated in a recently revisited form of inherited C3 glomerulonephritis (C3GN), characterized by isolated C3 deposits in the absence of immune complexes. A hallmark feature of all conditions is the age-dependent penetrance and a broad phenotypic heterogeneity in the sense that subsets of patients progress to added proteinuria or proteinuria and chronic renal failure that may or may not lead to end-stage kidney disease (ESKD) anywhere between the second and seventh decade of life. In addition to other excellent laboratory tools that assist the clinician in reaching the correct diagnosis, the molecular analysis emerges as the gold standard in establishing the diagnosis in many cases of doubt due to equivocal findings that complicate the differential diagnosis. Recent work led to the description of candidate genetic modifiers which confer a variable risk for progressing to chronic renal failure when co-inherited on the background of a primary glomerulopathy. Finally, more families are still waiting to be studied and more genes to be mapped and cloned that are responsible for other forms of heritable hematuric diseases. The study of such genes and their protein products will likely shed more light on the structure and function of the glomerular filtration barrier and other important glomerular components.
Collapse
Affiliation(s)
- Constantinos Deltas
- Molecular Medicine Research Center and Laboratory of Molecular and Medical Genetics, Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | | | | |
Collapse
|
15
|
Floege J. Primary glomerulonephritis: A review of important recent discoveries. Kidney Res Clin Pract 2013; 32:103-10. [PMID: 26877924 PMCID: PMC4714100 DOI: 10.1016/j.krcp.2013.06.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 05/29/2013] [Indexed: 01/29/2023] Open
Abstract
The publication of the Kidney Disease: Improving Global Outcomes (KDIGO) guidelines on the treatment of glomerular diseases in 2012 marked a milestone in this field, as it is the first time that comprehensive guidelines are provided for such disease entities. The current review focuses on major findings, both pathogenesis related and clinical, in the primary glomerulonephritis that have been made after the guidelines came into effect.
Collapse
Affiliation(s)
- Jürgen Floege
- Division of Nephrology and Immunology, Rheinisch-Westfälische Technische Hochschule University of Aachen, Aachen, Germany
| |
Collapse
|
16
|
Skerka C, Chen Q, Fremeaux-Bacchi V, Roumenina LT. Complement factor H related proteins (CFHRs). Mol Immunol 2013; 56:170-80. [PMID: 23830046 DOI: 10.1016/j.molimm.2013.06.001] [Citation(s) in RCA: 185] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 05/08/2013] [Indexed: 02/06/2023]
Abstract
Factor H related proteins comprise a group of five plasma proteins: CFHR1, CFHR2, CFHR3, CFHR4 and CFHR5, and each member of this group binds to the central complement component C3b. Mutations, genetic deletions, duplications or rearrangements in the individual CFHR genes are associated with a number of diseases including atypical hemolytic uremic syndrome (aHUS), C3 glomerulopathies (C3 glomerulonephritis (C3GN), dense deposit disease (DDD) and CFHR5 nephropathy), IgA nephropathy, age related macular degeneration (AMD) and systemic lupus erythematosus (SLE). Although complement regulatory functions were attributed to most of the members of the CFHR protein family, the precise role of each CFHR protein in complement activation and the exact contribution to disease pathology is still unclear. Recent publications show that CFHR proteins form homo- as well as heterodimers. Genetic abnormalities within the CFHR gene locus can result in hybrid proteins with affected dimerization or recognition domains which cause defective functions. Here we summarize the recent data about CFHR genes and proteins in order to better understand the role of CFHR proteins in complement activation and in complement associated diseases.
Collapse
Affiliation(s)
- Christine Skerka
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany.
| | | | | | | |
Collapse
|