1
|
Cruz GB, Vasquez MA, Cabañas E, Joseph JN, Skeen JC, Lynch KP, Ahmed I, Khairi EB, Bonitto JR, Clarke EG, Rubi S, Hameed N, Kaur S, Mathew N, Dacius TF, Jose TJ, Handford G, Wolfe S, Feher A, Tidwell K, Tobin J, Ugalde E, Fee S, Choe A, Gillenwater K, Hindi B, Pilout S, Natale NR, Domahoski N, Kent MH, Jacob JC, Lambert KG, Neuwirth LS. Developmental Lead Exposure in Rats Causes Sex-Dependent Changes in Neurobiological and Anxiety-Like Behaviors that Are Improved by Taurine Co-treatment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1370:461-479. [DOI: 10.1007/978-3-030-93337-1_43] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
2
|
Neuwirth LS, Emenike BU, Cruz GB, Cabañas E, Vasquez MA, Joseph JN, Ayaz Z, Mian M, Ali MM, Clarke EG, Barrera ED, Hameed N, Rubi S, Dacius TF, Skeen JC, Bonitto JR, Khairi EB, Iqbal A, Ahmed I, Jose TJ, Lynch KP, Alivira A, Mathew N, Kaur S, Masood S, Tranquilee B, Thiruverkadu V. Taurine-Derived Compounds Produce Anxiolytic Effects in Rats Following Developmental Lead Exposure. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1370:445-460. [PMID: 35882818 DOI: 10.1007/978-3-030-93337-1_42] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
Lead (Pb2+) is a developmental neurotoxicant that disrupts the GABA-shift and subsequently causes alterations in the brain's excitation-to-inhibition (E/I) balance. Taurine is a well-established neuroprotective and inhibitory compound for regulating brain excitability. Since mechanistically taurine can facilitate neuronal inhibition through the GABA-AR, the present study examined the anxiolytic potential of taurine derivatives. Treatment groups consisted of the following developmental Pb2+-exposures: Control (0 ppm) and Perinatal (150 ppm or 1,000 ppm lead acetate in the drinking water). Rats were scheduled for behavioral tests between postnatal days (PND) 36-45 with random drug assignments to either saline, taurine, or taurine-derived compound (TD-101, TD-102, or TD-103) to assess the rats' responsivity to each drug in mitigating the developmental Pb2+-exposure and anxiety-like behaviors through the GABAergic system. Long-Evans hooded rats were assessed using an open field (OF) test for preliminary locomotor assessment. Twenty-four hours later, the same rats were exposed to the elevated plus maze (EPM) and were given an i.p. injection of 43 mg/Kg of the saline, taurine, or TD drugs 15 min prior to testing. Each rat was tested using the triple-blind random assignment method for each drug condition. The OF data revealed that Control female rats had increased locomotor activity over Control male rats, and the Pb2+-exposed males and females had increased locomotor activity when compared to the Control male and female rats. However, in the EPM, the Control female rats exhibited more anxiety-like behaviors over Control male rats, and the Pb2+-exposed male and female rats showed selective responsivity to TD drugs when compared to taurine. For Pb2+-exposed males, TD-101 showed consistent recovery of anxiety-like behaviors similar to that of taurine regardless of Pb2+ dose, whereas in Pb2+-exposed females TD-101 and TD-103 showed greater anxiolytic responses in the EPM. The results from the present psychopharmacological study suggests that taurine and its derivatives are interesting drug candidates to explore sex-specific mechanisms and actions of taurine and the associated GABAergic receptor properties by which these compounds alleviate anxiety as a potential behavioral pharmacotherapy for neurodevelopmental Pb2+ exposure.
Collapse
Affiliation(s)
- Lorenz S Neuwirth
- Department of Psychology, SUNY Old Westbury, Old Westbury, NY, USA.
- SUNY Neuroscience Research Institute, SUNY Old Westbury, Old Westbury, NY, USA.
| | - Bright U Emenike
- Department of Chemistry and Physics, SUNY Old Westbury, Old Westbury, NY, USA
| | - George B Cruz
- SUNY Neuroscience Research Institute, SUNY Old Westbury, Old Westbury, NY, USA
- Department of Biology, SUNY Old Westbury, Old Westbury, NY, USA
| | - Ericka Cabañas
- SUNY Neuroscience Research Institute, SUNY Old Westbury, Old Westbury, NY, USA
- Department of Biology, SUNY Old Westbury, Old Westbury, NY, USA
| | - Michelle A Vasquez
- SUNY Neuroscience Research Institute, SUNY Old Westbury, Old Westbury, NY, USA
- Department of Chemistry and Physics, SUNY Old Westbury, Old Westbury, NY, USA
| | - Jewel N Joseph
- SUNY Neuroscience Research Institute, SUNY Old Westbury, Old Westbury, NY, USA
- Department of Biology, SUNY Old Westbury, Old Westbury, NY, USA
| | - Zaid Ayaz
- SUNY Neuroscience Research Institute, SUNY Old Westbury, Old Westbury, NY, USA
- Department of Biology, SUNY Old Westbury, Old Westbury, NY, USA
| | - Mohammed Mian
- SUNY Neuroscience Research Institute, SUNY Old Westbury, Old Westbury, NY, USA
- Department of Biology, SUNY Old Westbury, Old Westbury, NY, USA
| | - Mohamed M Ali
- SUNY Neuroscience Research Institute, SUNY Old Westbury, Old Westbury, NY, USA
- Department of Biology, SUNY Old Westbury, Old Westbury, NY, USA
| | - Evan G Clarke
- SUNY Neuroscience Research Institute, SUNY Old Westbury, Old Westbury, NY, USA
- Department of Biology, SUNY Old Westbury, Old Westbury, NY, USA
| | - Eddy D Barrera
- Department of Psychology, SUNY Old Westbury, Old Westbury, NY, USA
- SUNY Neuroscience Research Institute, SUNY Old Westbury, Old Westbury, NY, USA
| | - Nimra Hameed
- SUNY Neuroscience Research Institute, SUNY Old Westbury, Old Westbury, NY, USA
- Department of Biology, SUNY Old Westbury, Old Westbury, NY, USA
| | - Samantha Rubi
- SUNY Neuroscience Research Institute, SUNY Old Westbury, Old Westbury, NY, USA
- Department of Biology, SUNY Old Westbury, Old Westbury, NY, USA
| | - Teddy F Dacius
- Department of Psychology, SUNY Old Westbury, Old Westbury, NY, USA
- SUNY Neuroscience Research Institute, SUNY Old Westbury, Old Westbury, NY, USA
| | - Jourvonn C Skeen
- SUNY Neuroscience Research Institute, SUNY Old Westbury, Old Westbury, NY, USA
- Department of Biology, SUNY Old Westbury, Old Westbury, NY, USA
| | - Jalen R Bonitto
- SUNY Neuroscience Research Institute, SUNY Old Westbury, Old Westbury, NY, USA
- Department of Biology, SUNY Old Westbury, Old Westbury, NY, USA
| | - Eric B Khairi
- SUNY Neuroscience Research Institute, SUNY Old Westbury, Old Westbury, NY, USA
- Department of Biology, SUNY Old Westbury, Old Westbury, NY, USA
| | - Asma Iqbal
- Department of Psychology, SUNY Old Westbury, Old Westbury, NY, USA
- SUNY Neuroscience Research Institute, SUNY Old Westbury, Old Westbury, NY, USA
| | - Isra Ahmed
- Department of Psychology, SUNY Old Westbury, Old Westbury, NY, USA
- SUNY Neuroscience Research Institute, SUNY Old Westbury, Old Westbury, NY, USA
| | - Tokunbo J Jose
- Department of Psychology, SUNY Old Westbury, Old Westbury, NY, USA
- SUNY Neuroscience Research Institute, SUNY Old Westbury, Old Westbury, NY, USA
| | - Kirsten P Lynch
- Department of Psychology, SUNY Old Westbury, Old Westbury, NY, USA
- SUNY Neuroscience Research Institute, SUNY Old Westbury, Old Westbury, NY, USA
| | - Amber Alivira
- Department of Psychology, SUNY Old Westbury, Old Westbury, NY, USA
- SUNY Neuroscience Research Institute, SUNY Old Westbury, Old Westbury, NY, USA
| | - Neena Mathew
- Department of Psychology, SUNY Old Westbury, Old Westbury, NY, USA
- SUNY Neuroscience Research Institute, SUNY Old Westbury, Old Westbury, NY, USA
| | - Sukhpreet Kaur
- Department of Psychology, SUNY Old Westbury, Old Westbury, NY, USA
- SUNY Neuroscience Research Institute, SUNY Old Westbury, Old Westbury, NY, USA
| | - Sidrah Masood
- Department of Psychology, SUNY Old Westbury, Old Westbury, NY, USA
- SUNY Neuroscience Research Institute, SUNY Old Westbury, Old Westbury, NY, USA
| | - Bettina Tranquilee
- SUNY Neuroscience Research Institute, SUNY Old Westbury, Old Westbury, NY, USA
- Department of Biology, SUNY Old Westbury, Old Westbury, NY, USA
| | - Veni Thiruverkadu
- SUNY Neuroscience Research Institute, SUNY Old Westbury, Old Westbury, NY, USA
- Department of Biology, SUNY Old Westbury, Old Westbury, NY, USA
| |
Collapse
|
7
|
Neuwirth LS, Phillips GR, El Idrissi A. Perinatal Pb 2+ exposure alters the expression of genes related to the neurodevelopmental GABA-shift in postnatal rats. J Biomed Sci 2018; 25:45. [PMID: 29793500 PMCID: PMC5967126 DOI: 10.1186/s12929-018-0450-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 05/18/2018] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Lead (Pb2+) is an environmental neurotoxicant that disrupts neurodevelopment, communication, and organization through competition with Ca2+ signaling. How perinatal Pb2+ exposure affects Ca2+-related gene regulation remains unclear. However, Ca2+ activates the L-Type voltage sensitive calcium channel β-3 subunit (Ca-β3), which autoregulates neuronal excitability and plays a role in the GABA-shift from excitatory-to-inhibitory neurotransmission. METHOD A total of eight females (n = 4 Control and n = 4 Perinatal) and four males (n = 2 Control and n = 2 Perinatal) rats were used as breeders to serve as Dams and Sires. The Dam's litters each ranged from N = 6-10 pups per litter (M = 8, SD = 2), irrespective of Pb2+ treatment, with a majority of males over females. Since there were more males in each of the litters than females, to best assess and equally control for Pb2+- and litter-effects across all developmental time-points under study, female pups were excluded due to an insufficient sample size availability from the litter's obtained. From the included pup litters, 24 experimentally naïve male Long Evans hooded rat pups (Control N = 12; Pb2+ N = 12) were used in the present study. Brains were extracted from rat prefrontal cortex (PFC) and hippocampus (HP) at postnatal day (PND) 2, 7, 14 and 22, were homogenized in 1 mL of TRIzol reagent per 100 mg of tissue using a glass-Teflon homogenizer. Post-centrifugation, RNA was extracted with chloroform and precipitated with isopropyl alcohol. RNA samples were then re-suspended in 100 μL of DEPC treated H2O. Next, 10 μg of total RNA was treated with RNase-free DNase (Qiagen) at 37 °C for 1 h and re-purified by a 3:1 phenol/chloroform extraction followed by an ethanol precipitation. From the purified RNA, 1 μg was used in the SYBR GreenER Two-Step qRT-PCR kit (Invitrogen) for first strand cDNA synthesis and the quantitative real-time PCR (qRT-PCR). The effects of perinatal Pb2+ exposure on genes related to early neuronal development and the GABA-shift were evaluated through the expression of: Ca-β3, GABAAR-β3, NKCC1, KCC2, and GAD 80, 86, 65, and 67 isoforms. RESULTS Perinatal Pb2+ exposure significantly altered the GABA-shift neurodevelopmental GOI expression as a function of Pb2+ exposure and age across postnatal development. Dramatic changes were observed with Ca-β3 expression consistent with a Pb2+ competition with L-type calcium channels. By PND 22, Ca-β3 mRNA was reduced by 1-fold and 1.5-fold in PFC and HP respectively, relative to controls. All HP GABA-β3 mRNA levels were particularly vulnerable to Pb2+ at PND 2 and 7, and both PFC and HP were negatively impacted by Pb2+ at PND 22. Additionally, Pb2+ altered both the PFC and HP immature GAD 80/86 mRNA expression particularly at PND 2, whereas mature GAD 65/67 were most significantly affected by Pb2+ at PND 22. CONCLUSIONS Perinatal Pb2+ exposure disrupts the expression of mRNAs related to the GABA-shift, potentially altering the establishment, organization, and excitability of neural circuits across development. These findings offer new insights into the altered effects Pb2+ has on the GABAergic system preceding what is known regarding Pb2+ insults unto the glutamatergic system.
Collapse
Affiliation(s)
- Lorenz S. Neuwirth
- Department of Psychology, SUNY Old Westbury, 223 Store Hill Road, Bldg.: NAB, Room: 2059, Old Westbury, NY 11568-1700 USA
- SUNY Old Westbury, Neuroscience Research Institute, 223 Store Hill Road, Bldg.: NAB, Room: 2059, Old Westbury, NY 11568-1700 USA
- Department of Biology, The College of Staten Island (CUNY), Staten Island, NY 10314 USA
- The CUNY Graduate Center, Biology Program, New York, NY 10016 USA
- The Center for Developmental Neuroscience, Staten Island, NY 10314 USA
| | - Greg R. Phillips
- Department of Biology, The College of Staten Island (CUNY), Staten Island, NY 10314 USA
- The CUNY Graduate Center, Biology Program, New York, NY 10016 USA
- The Center for Developmental Neuroscience, Staten Island, NY 10314 USA
| | - Abdeslem El Idrissi
- Department of Biology, The College of Staten Island (CUNY), Staten Island, NY 10314 USA
- The CUNY Graduate Center, Biology Program, New York, NY 10016 USA
- The Center for Developmental Neuroscience, Staten Island, NY 10314 USA
| |
Collapse
|