1
|
Singhvi P, Verma J, Panwar N, Wani TQ, Singh A, Qudratullah M, Chakraborty A, Saneja A, Sarkar DP, Panda AK. Molecular Attributes Associated With Refolding of Inclusion Body Proteins Using the Freeze-Thaw Method. Front Microbiol 2021; 12:618559. [PMID: 33959102 PMCID: PMC8093829 DOI: 10.3389/fmicb.2021.618559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 03/10/2021] [Indexed: 11/13/2022] Open
Abstract
Understanding the structure-function of inclusion bodies (IBs) in the last two decades has led to the development of several mild solubilization buffers for the improved recovery of bioactive proteins. The recently developed freeze-thaw-based inclusion body protein solubilization method has received a great deal of attention due to its simplicity and cost-effectiveness. The present report investigates the reproducibility, efficiency, and plausible mechanism of the freeze-thaw-based IB solubilization. The percentage recovery of functionally active protein species of human growth hormone (hGH) and L-asparaginase from their IBs in Escherichia coli and the quality attributes associated with the freeze-thaw-based solubilization method were analyzed in detail. The overall yield of the purified hGH and L-asparaginase protein was found to be around 14 and 25%, respectively. Both purified proteins had functionally active species lower than that observed with commercial proteins. Biophysical and biochemical analyses revealed that the formation of soluble aggregates was a major limitation in the case of tough IB protein like hGH. On the other hand, the destabilization of soft IB protein like L-asparaginase led to the poor recovery of functionally active protein species. Our study provides insight into the advantages, disadvantages, and molecular-structural information associated with the freeze-thaw-based solubilization method.
Collapse
Affiliation(s)
- Priyank Singhvi
- Product Development Cell, National Institute of Immunology, New Delhi, India
| | - Juhi Verma
- Product Development Cell, National Institute of Immunology, New Delhi, India
| | - Neha Panwar
- Product Development Cell, National Institute of Immunology, New Delhi, India.,Department of Biochemistry, University of Delhi, New Delhi, India
| | - Tabiya Qayoom Wani
- Product Development Cell, National Institute of Immunology, New Delhi, India
| | - Akansha Singh
- Product Development Cell, National Institute of Immunology, New Delhi, India
| | - Md Qudratullah
- Product Development Cell, National Institute of Immunology, New Delhi, India
| | - Arnab Chakraborty
- Product Development Cell, National Institute of Immunology, New Delhi, India
| | - Ankit Saneja
- Product Development Cell, National Institute of Immunology, New Delhi, India
| | - Debi P Sarkar
- Department of Biochemistry, University of Delhi, New Delhi, India
| | - Amulya K Panda
- Product Development Cell, National Institute of Immunology, New Delhi, India
| |
Collapse
|
2
|
Ojha T, Hu Q, Colombo C, Wit J, van Geijn M, van Steenbergen MJ, Bagheri M, Königs-Werner H, Buhl EM, Bansal R, Shi Y, Hennink WE, Storm G, Rijcken CJF, Lammers T. Lyophilization stabilizes clinical-stage core-crosslinked polymeric micelles to overcome cold chain supply challenges. Biotechnol J 2021; 16:e2000212. [PMID: 33484630 DOI: 10.1002/biot.202000212] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 01/15/2021] [Accepted: 01/21/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND CriPec technology enables the generation of drug-entrapped biodegradable core-crosslinked polymeric micelles (CCPM) with high drug loading capacity, tailorable size, and drug release kinetics. Docetaxel (DTX)-entrapped CCPM, also referred to as CPC634, have demonstrated favorable pharmacokinetics, tolerability, and enhanced tumor uptake in patients. Clinical efficacy evaluation is ongoing. CPC634 is currently stored (shelf life > 5 years) and shipped as a frozen aqueous dispersion at temperatures below -60°C, in order to prevent premature release of DTX and hydrolysis of the core-crosslinks. Consequently, like other aqueous nanomedicine formulations, CPC634 relies on cold chain supply, which is unfavorable for commercialization. Lyophilization can help to bypass this issue. METHODS AND RESULTS Freeze-drying methodology for CCPM was developed by employing CPC634 as a model formulation, and sucrose and trehalose as cryoprotectants. We studied the residual moisture content and reconstitution behavior of the CPC634 freeze-dried cake, as well as the size, polydispersity index, morphology, drug retention, and release kinetics of reconstituted CPC634. Subsequently, the freeze-drying methodology was validated in an industrial setting, yielding a CPC634 freeze-dried cake with a moisture content of less than 0.1 wt%. It was found that trehalose-cryoprotected CPC634 could be rapidly reconstituted in less than 5 min at room temperature. Critical quality attributes such as size, morphology, drug retention, and release kinetics of trehalose-cryoprotected freeze-dried CPC634 upon reconstitution were identical to those of non-freeze-dried CPC634. CONCLUSION Our findings provide proof-of-concept for the lyophilization of drug-containing CCPM and our methodology is readily translatable to large-scale manufacturing for future commercialization.
Collapse
Affiliation(s)
- Tarun Ojha
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany.,Department of Pharmaceutics, Utrecht University, Utrecht, The Netherlands.,Department of Medical Cell BioPhysics, Faculty of Science and Technology, University of Twente, Translational Liver Research, Enschede, The Netherlands
| | - Qizhi Hu
- Cristal Therapeutics, Maastricht, The Netherlands
| | | | - Jan Wit
- Saudade Pharma Consultancy, Eijsden, The Netherlands
| | | | | | - Mahsa Bagheri
- Department of Pharmaceutics, Utrecht University, Utrecht, The Netherlands
| | - Hiltrud Königs-Werner
- Electron Microscope Facility, University Hospital RWTH, RWTH Aachen University, Aachen, Germany
| | - Eva Miriam Buhl
- Electron Microscope Facility, University Hospital RWTH, RWTH Aachen University, Aachen, Germany
| | - Ruchi Bansal
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany.,Department of Medical Cell BioPhysics, Faculty of Science and Technology, University of Twente, Translational Liver Research, Enschede, The Netherlands
| | - Yang Shi
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Wim E Hennink
- Department of Pharmaceutics, Utrecht University, Utrecht, The Netherlands
| | - Gert Storm
- Department of Pharmaceutics, Utrecht University, Utrecht, The Netherlands.,Department of Biomaterials, Science and Technology, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | | | - Twan Lammers
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany.,Department of Pharmaceutics, Utrecht University, Utrecht, The Netherlands.,Department of Biomaterials, Science and Technology, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| |
Collapse
|
3
|
Padhiar AA, Chanda W, Joseph TP, Guo X, Liu M, Sha L, Batool S, Gao Y, Zhang W, Huang M, Zhong M. Comparative study to develop a single method for retrieving wide class of recombinant proteins from classical inclusion bodies. Appl Microbiol Biotechnol 2018; 102:2363-2377. [PMID: 29387954 DOI: 10.1007/s00253-018-8754-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 12/28/2017] [Accepted: 12/30/2017] [Indexed: 11/30/2022]
Abstract
The formation of inclusion bodies (IBs) is considered as an Achilles heel of heterologous protein expression in bacterial hosts. Wide array of techniques has been developed to recover biochemically challenging proteins from IBs. However, acquiring the active state even from the same protein family was found to be an independent of single established method. Here, we present a new strategy for the recovery of wide sub-classes of recombinant protein from harsh IBs. We found that numerous methods and their combinations for reducing IB formation and producing soluble proteins were not effective, if the inclusion bodies were harsh in nature. On the other hand, different practices with mild solubilization buffers were able to solubilize IBs completely, yet the recovery of active protein requires large screening of refolding buffers. With the integration of previously reported mild solubilization techniques, we proposed an improved method, which comprised low sarkosyl concentration, ranging from 0.05 to 0.1% coupled with slow freezing (- 1 °C/min) and fast thaw (room temperature), resulting in greater solubility and the integrity of solubilized protein. Dilution method was employed with single buffer to restore activity for every sub-class of recombinant protein. Results showed that the recovered protein's activity was significantly higher compared with traditional solubilization/refolding approach. Solubilization of IBs by the described method was proved milder in nature, which restored native-like conformation of proteins within IBs.
Collapse
Affiliation(s)
- Arshad Ahmed Padhiar
- Department of Microbiology, Basic Medical Sciences, Dalian Medical University, 9 Western Section, Lvshun South Road, Lvshunkou District, Dalian, 116044, China.,Department of Biosciences, Faculty of Science, Barrett Hodgson University, Karachi, Pakistan
| | - Warren Chanda
- Department of Microbiology, Basic Medical Sciences, Dalian Medical University, 9 Western Section, Lvshun South Road, Lvshunkou District, Dalian, 116044, China
| | - Thomson Patrick Joseph
- Department of Microbiology, Basic Medical Sciences, Dalian Medical University, 9 Western Section, Lvshun South Road, Lvshunkou District, Dalian, 116044, China
| | - Xuefang Guo
- Department of Microbiology, Basic Medical Sciences, Dalian Medical University, 9 Western Section, Lvshun South Road, Lvshunkou District, Dalian, 116044, China
| | - Min Liu
- Department of Microbiology, Basic Medical Sciences, Dalian Medical University, 9 Western Section, Lvshun South Road, Lvshunkou District, Dalian, 116044, China
| | - Li Sha
- Department of Microbiology, Basic Medical Sciences, Dalian Medical University, 9 Western Section, Lvshun South Road, Lvshunkou District, Dalian, 116044, China
| | - Samana Batool
- Department of Microbiology, Basic Medical Sciences, Dalian Medical University, 9 Western Section, Lvshun South Road, Lvshunkou District, Dalian, 116044, China
| | - Yifan Gao
- Department of Microbiology, Basic Medical Sciences, Dalian Medical University, 9 Western Section, Lvshun South Road, Lvshunkou District, Dalian, 116044, China
| | - Wei Zhang
- Department of Microbiology, Basic Medical Sciences, Dalian Medical University, 9 Western Section, Lvshun South Road, Lvshunkou District, Dalian, 116044, China
| | - Min Huang
- Department of Microbiology, Basic Medical Sciences, Dalian Medical University, 9 Western Section, Lvshun South Road, Lvshunkou District, Dalian, 116044, China.
| | - Mintao Zhong
- Department of Microbiology, Basic Medical Sciences, Dalian Medical University, 9 Western Section, Lvshun South Road, Lvshunkou District, Dalian, 116044, China.
| |
Collapse
|