1
|
Pellicer N, Cozzolino M, Diaz-García C, Galliano D, Cobo A, Pellicer A, Herraiz S. Ovarian rescue in women with premature ovarian insufficiency: facts and fiction. Reprod Biomed Online 2023; 46:543-565. [PMID: 36710157 DOI: 10.1016/j.rbmo.2022.12.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/16/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022]
Abstract
The ovary has a comparatively short functional lifespan compared with other organs, and genetic and pathological injuries can further shorten its functional life. Thus, preserving ovarian function should be considered in the context of women with threats to ovarian reserve, such as ageing, premature ovarian insufficiency (POI) and diminished ovarian reserve (DOR). Indeed, one-third of women with POI retain resting follicles that can be reactivated to produce competent oocytes, as proved by the in-vitro activation of dormant follicles. This paper discusses mechanisms and clinical data relating to new therapeutic strategies using ovarian fragmentation, stem cells or platelet-rich plasma to regain ovarian function in women of older age (>38 years) or with POI or DOR. Follicle reactivation techniques show promising experimental outcomes and have been successful in some cases, when POI is established or DOR diagnosed; however, there is scarce clinical evidence to warrant their widespread clinical use. Beyond these contexts, also discussed is how new insights into the biological mechanisms governing follicular dynamics and oocyte competence may play a role in reversing ovarian damage, as no technique modifies oocyte quality. Additional studies should focus on increasing follicle number and quality. Finally, there is a small but important subgroup of women lacking residual follicles and requiring oocyte generation from stem cells.
Collapse
Affiliation(s)
| | | | - César Diaz-García
- IVI London, EGA Institute for Women's Health, UCL, London, UK; IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | | | - Ana Cobo
- IVI RMA Valencia, Valencia, Spain
| | - Antonio Pellicer
- IVI RMA Rome, Rome, Italy; IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - Sonia Herraiz
- IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain.
| |
Collapse
|
2
|
Proteomic Analysis of Hypoxia-Induced Senescence of Human Bone Marrow Mesenchymal Stem Cells. Stem Cells Int 2021; 2021:5555590. [PMID: 34484348 PMCID: PMC8416403 DOI: 10.1155/2021/5555590] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 06/29/2021] [Accepted: 07/28/2021] [Indexed: 12/18/2022] Open
Abstract
Methods Hypoxia in hBMSCs was induced for 0, 4, and 12 hours, and cellular senescence was evaluated by senescence-associated β-galactosidase (SA-β-gal) staining. Tandem mass tag (TMT) labeling was combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS) for differential proteomic analysis of hypoxia in hBMSCs. Parallel reaction monitoring (PRM) analysis was used to validate the candidate proteins. Verifications of signaling pathways were evaluated by western blotting. Cell apoptosis was evaluated using Annexin V/7-AAD staining by flow cytometry. The production of reactive oxygen species (ROS) was detected by the fluorescent probe 2,7-dichlorodihydrofluorescein diacetate (DCFH-DA). Results Cell senescence detected by SA-β-gal activity was higher in the 12-hour hypoxia-induced group. TMT analysis of 12-hour hypoxia-induced cells identified over 6000 proteins, including 686 differentially expressed proteins. Based on biological pathway analysis, we found that the senescence-associated proteins were predominantly enriched in the cancer pathways, PI3K-Akt pathway, and cellular senescence signaling pathways. CDK1, CDK2, and CCND1 were important nodes in PPI analyses. Moreover, the CCND1, UQCRH, and COX7C expressions were verified by PRM. Hypoxia induction for 12 hours in hBMSCs reduced CCND1 expression but promoted ROS production and cell apoptosis. Such effects were markedly reduced by the PI3K agonist, 740 Y-P, and attenuated by LY294002. Conclusions Hypoxia of hBMSCs inhibited CCND1 expression but promoted ROS production and cell apoptosis through activating the PI3K-dependent signaling pathway. These findings provided a detailed characterization of the proteomic profiles related to hypoxia-induced senescence of hBMSCs and facilitated our understanding of the molecular mechanisms leading to stem cell senescence.
Collapse
|
3
|
Anastasio A, Gergues M, Lebhar MS, Rameshwar P, Fernandez-Moure J. Isolation and characterization of mesenchymal stem cells in orthopaedics and the emergence of compact bone mesenchymal stem cells as a promising surgical adjunct. World J Stem Cells 2020; 12:1341-1353. [PMID: 33312402 PMCID: PMC7705465 DOI: 10.4252/wjsc.v12.i11.1341] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 09/26/2020] [Accepted: 10/13/2020] [Indexed: 02/06/2023] Open
Abstract
The potential clinical and economic impact of mesenchymal stem cell (MSC) therapy is immense. MSCs act through multiple pathways: (1) as “trophic” cells, secreting various factors that are immunomodulatory, anti-inflammatory, anti-apoptotic, proangiogenic, proliferative, and chemoattractive; (2) in conjunction with cells native to the tissue they reside in to enhance differentiation of surrounding cells to facilitate tissue regrowth. Researchers have developed methods for the extraction and expansion of MSCs from animal and human tissues. While many sources of MSCs exist, including adipose tissue and iliac crest bone graft, compact bone (CB) MSCs have shown great potential for use in orthopaedic surgery. CB MSCs exert powerful immunomodulatory effects in addition to demonstrating excellent regenerative capacity for use in filling boney defects. CB MSCs have been shown to have enhanced response to hypoxic conditions when compared with other forms of MSCs. More work is needed to continue to characterize the potential applications for CB MSCs in orthopaedic trauma.
Collapse
Affiliation(s)
- Albert Anastasio
- Department of Orthopedic Surgery, Duke University Health System, Durham, NC 27710, United States
| | - Marina Gergues
- Department of Medicine, Hematology/Oncology, Rutgers University, New Jersey Medical School, Newark, NJ 07103, United States
| | - Michael S Lebhar
- School of Medicine, Duke University School of Medicine, Durham, NC 27710, United States
| | - Pranela Rameshwar
- Department of Medicine-Hematology/Oncology, Rutgers School of Biomedical Health Science, Newark, NJ 07103, United States
| | - Joseph Fernandez-Moure
- Department of Surgery, Division of Trauma, Acute, and Critical Care Surgery, Duke University School of Medicine, Durham, NC 27710, United States
| |
Collapse
|
4
|
Treatment potential of bone marrow-derived stem cells in women with diminished ovarian reserves and premature ovarian failure. Curr Opin Obstet Gynecol 2020; 31:156-162. [PMID: 30855290 DOI: 10.1097/gco.0000000000000531] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW We review the techniques recently tested in both animal models and humans to provide a state-of-the-art on adult stem cell ovarian transplant to achieve ovarian rejuvenation in patients with diminished ovarian reserves. RECENT FINDINGS As the firsts reports of spontaneous pregnancies achieved after bone marrow transplantation in oncologic women with primary ovarian insufficiency, increasing evidence supports the regenerative effects of stem cell-based therapies in the ovarian niche. Adult stem cells from several origins promote follicular development, increase ovarian local vascularization, increase follicle and stromal cell proliferation and reduce cell apoptosis and follicular atresia, although they do not modify embryo quality. Therefore, residual quiescent follicles of aged or damaged ovaries might produce competent oocytes in an adequate ovarian environment. Nevertheless, further research is needed to properly evaluate underlying mechanisms, identify best cell sources and design less invasive infusion techniques. SUMMARY Stem cells may be a relevant therapeutic alternative for ovary regeneration and follicular development in patients with impaired ovaries, such as poor ovarian responders or women diagnosed with primary ovarian insufficiency.
Collapse
|
5
|
Fracaro L, Senegaglia AC, Herai RH, Leitolis A, Boldrini-Leite LM, Rebelatto CLK, Travers PJ, Brofman PRS, Correa A. The Expression Profile of Dental Pulp-Derived Stromal Cells Supports Their Limited Capacity to Differentiate into Adipogenic Cells. Int J Mol Sci 2020; 21:E2753. [PMID: 32326648 PMCID: PMC7215853 DOI: 10.3390/ijms21082753] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 03/26/2020] [Accepted: 04/07/2020] [Indexed: 12/16/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) can self-renew, differentiate into specialised cells and have different embryonic origins-ectodermal for dental pulp-derived MSCs (DPSCs) and mesodermal for adipose tissue-derived MSCs (ADSCs). Data on DPSCs adipogenic differentiation potential and timing vary, and the lack of molecular and genetic information prompted us to gain a better understanding of DPSCs adipogenic differentiation potential and gene expression profile. While DPSCs differentiated readily along osteogenic and chondrogenic pathways, after 21 days in two different types of adipogenic induction media, DPSCs cultures did not contain lipid vacuoles and had low expression levels of the adipogenic genes proliferator-activated receptor gamma (PPARG), lipoprotein lipase (LPL) and CCAAT/enhancer-binding protein alpha (CEBPA). To better understand this limitation in adipogenesis, transcriptome analysis in undifferentiated DPSCs was carried out, with the ADSC transcriptome used as a positive control. In total, 14,871 transcripts were common to DPSCs and ADSCs, some were unique (DPSCs: 471, ADSCs: 1032), and 510 were differentially expressed genes. Detailed analyses of overrepresented transcripts showed that DPSCs express genes that inhibit adipogenic differentiation, revealing the possible mechanism for their limited adipogenesis.
Collapse
Affiliation(s)
- Letícia Fracaro
- Core for Cell Technology, School of Medicine, Pontifícia Universidade Católica do Paraná—PUCPR, Curitiba, Parana 80215-901, Brazil; (L.F.); (A.C.S.); (L.M.B.-L.); (C.L.K.R.)
| | - Alexandra C. Senegaglia
- Core for Cell Technology, School of Medicine, Pontifícia Universidade Católica do Paraná—PUCPR, Curitiba, Parana 80215-901, Brazil; (L.F.); (A.C.S.); (L.M.B.-L.); (C.L.K.R.)
| | - Roberto H. Herai
- Graduate Program in Health Sciences (PPGCS), School of Medicine, Pontifícia Universidade Católica do Paraná—PUCPR, Curitiba, Parana 80215-901, Brazil;
| | - Amanda Leitolis
- Laboratory of Basic Biology of Stem Cells, Carlos Chagas Institute, Fiocruz-Parana, Curitiba, Parana 81350-010, Brazil;
| | - Lidiane M. Boldrini-Leite
- Core for Cell Technology, School of Medicine, Pontifícia Universidade Católica do Paraná—PUCPR, Curitiba, Parana 80215-901, Brazil; (L.F.); (A.C.S.); (L.M.B.-L.); (C.L.K.R.)
| | - Carmen L. K. Rebelatto
- Core for Cell Technology, School of Medicine, Pontifícia Universidade Católica do Paraná—PUCPR, Curitiba, Parana 80215-901, Brazil; (L.F.); (A.C.S.); (L.M.B.-L.); (C.L.K.R.)
| | - Paul J. Travers
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, Scotland, UK;
| | - Paulo R. S. Brofman
- Core for Cell Technology, School of Medicine, Pontifícia Universidade Católica do Paraná—PUCPR, Curitiba, Parana 80215-901, Brazil; (L.F.); (A.C.S.); (L.M.B.-L.); (C.L.K.R.)
| | - Alejandro Correa
- Laboratory of Basic Biology of Stem Cells, Carlos Chagas Institute, Fiocruz-Parana, Curitiba, Parana 81350-010, Brazil;
| |
Collapse
|
6
|
Alrefaei GI, Alkarim SA, Abduljabbar HS. Impact of Mothers' Age on Telomere Length and Human Telomerase Reverse Transcriptase Expression in Human Fetal Membrane-Derived Mesenchymal Stem Cells. Stem Cells Dev 2019; 28:1632-1645. [PMID: 31650883 DOI: 10.1089/scd.2019.0144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Age-related cellular changes and limited replicative capacity of adult mesenchymal stem cells (MSCs) are few of the challenges confronting stem cell research. MSCs from human fetal membranes (hFM-MSCs), including placental, umbilical cord, and amniotic membrane, are considered an alternative to adult MSCs. However, the effect of mothers' age on hFM-MSC cellular properties is still not clearly established. This study aimed to evaluate the effect of mothers' age on hFM-MSC telomere length, telomerase activity, and proliferation ability in three different age groups: GI (20-29 years), GII (30-39 years), and GIII (≥40 years). hFM samples were collected from pregnant women ≤37 weeks after obtaining consent. hFM-MSCs were isolated and cultured to characterize them by flow cytometry and assess proliferation by MTT assay and doubling time. Telomere length and expression levels of human telomerase reverse transcriptase were assessed by quantitative real-time polymerase chain reaction (qRT-RCR). hFM-MSCs in the three age groups were spindle-shaped, plastic-adherent, and exhibited high proliferation rates and strong expression of hMSC markers. GI showed the longest telomere length in hMSCs in various FM regions, whereas GIII showed the highest level of telomerase expression. There was no difference in telomere length between GII and GIII, and both groups showed the same hMSC characteristics. In conclusion, although the hFM-MSCs derived from different fetal membranes maintained the MSC characteristics in all study groups, the hFM-MSCs of older mothers had shorter telomeres and higher telomerase activity and proliferation rate than did those derived from younger mothers. Thus, the hFM-MSCs of older mothers could be unsuitable for expansion in vitro or stem cell therapy. Determination of telomere length and telomerase expression level of hFM might help characterizing and understanding the biological differences of hFM-MSCs in different age groups.
Collapse
Affiliation(s)
- Ghadeer I Alrefaei
- Biology Department, Faculty of Sciences, University of Jeddah, Jeddah, Saudi Arabia
| | - Saleh A Alkarim
- Biology Department, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.,Embryonic and Cancer Stem Cell Research Group, King Fahad Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hassan S Abduljabbar
- Obstetrics and Gynecology Department, King Abdulaziz University Hospital, Jeddah, Saudi Arabia.,Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
7
|
Chi B, Fan X, Li Z, Liu G, Zhang G, Xu H, Li Z, Lian Q, Xing L, Tian F. Identification of Gli1-interacting proteins during simvastatin-stimulated osteogenic differentiation of bone marrow mesenchymal stem cells. J Cell Biochem 2019; 120:18979-18994. [PMID: 31245876 DOI: 10.1002/jcb.29221] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 05/31/2019] [Accepted: 05/31/2019] [Indexed: 01/20/2023]
Abstract
Simvastatin has been shown to promote osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). Our study aimed to illuminate the underlying mechanism, with a specific focus on the role of Hedgehog signaling in this process. BMSCs cultured with or without 10-7 mol/L simvastatin were subjected to evaluation of osteogenic differentiation capacity. Osteogenic markers such as type 1 collagen (COL1) and osteocalcin (OCN), as well as key molecules of Hedgehog signaling molecules, were examined by Western blot and real-time polymerase chain reaction (PCR). Co-immunoprecipitation and mass spectrometry assays were applied to screen for Gli1-interacting proteins. Cyclopamine (Cpn) was used as a Hedgehog signaling inhibitor. Our results indicated that simvastatin increased alkaline phosphatase (ALP) activity; mineralization of extracellular matrix; mRNA expression of ALP, COL1, and OCN; and expression and nuclear translocation of Gli1. Contrasting effects were observed in Cpn-exposed groups, but were partially rescued by the simvastatin treatment. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses indicated that Gli1-interacting proteins were primarily associated with mitogen-activated protein kinase (MAPK) (P = 7.04E-04 ), hippo, insulin, and glucagon signaling. Further, hub genes identified by protein-protein interaction network analysis included Gli1-interacting proteins such as Ppp2r1a, Rac1, Etf1, and XPO1/CRM1. In summary, the current study showed that the mechanism by which simvastatin stimulates osteogenic differentiation of BMSCs involves activation of Hedgehog signaling, as indicated by interactions with Gli1 and, most notably, the MAPK signaling pathway.
Collapse
Affiliation(s)
- Bojing Chi
- Medical Research Center, North China University of Science and Technology, Tangshan, China.,Department of Geriatrics, Affiliated Hospital of North China University of Science and Technology, Tangshan, China
| | - Xinhao Fan
- Department of Stomatology, Kailuan General Hospital, Tangshan, China
| | - Zhengxiao Li
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Guangyuan Liu
- Medical Research Center, North China University of Science and Technology, Tangshan, China
| | - Guobin Zhang
- Medical Research Center, North China University of Science and Technology, Tangshan, China
| | - Hong Xu
- Medical Research Center, North China University of Science and Technology, Tangshan, China
| | - Zhiguo Li
- Medical Research Center, North China University of Science and Technology, Tangshan, China
| | - Qiangqiang Lian
- Medical Research Center, North China University of Science and Technology, Tangshan, China
| | - Lei Xing
- Department of Geriatrics, Affiliated Hospital of North China University of Science and Technology, Tangshan, China
| | - Faming Tian
- Medical Research Center, North China University of Science and Technology, Tangshan, China
| |
Collapse
|
8
|
Sagaradze G, Grigorieva O, Nimiritsky P, Basalova N, Kalinina N, Akopyan Z, Efimenko A. Conditioned Medium from Human Mesenchymal Stromal Cells: Towards the Clinical Translation. Int J Mol Sci 2019; 20:ijms20071656. [PMID: 30987106 PMCID: PMC6479925 DOI: 10.3390/ijms20071656] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 03/29/2019] [Accepted: 03/30/2019] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stem/stromal cells (MSC) remain a promising tool for regenerative medicine as the efficacy of MSC-based cell therapy has been demonstrated for a broad spectrum of indications. Their therapeutic potency is mainly associated with their ability to secrete multiple factors critical for tissue regeneration. Due to comparable effects along with superior safety MSC conditioned medium (MSC-CM) containing a complex of MSC-secreted products is considered a reasonable alternative to cell therapy. However, the lack of standards regulating bioprocessing, use of proper auxiliary materials, and quality control complicates the development of MSC secretome-based therapeutics. In this study, we suggested several approaches addressing these issues. We manufactured 36 MSC-CM samples based on different xeno-free serum-free chemically defined media (DMEM-LG or MSC NutriStem® XF) using original protocols and considered total concentrations of regeneration-associated paracrine factors secreted by human adipose-derived MSC at each time-point of conditioning. Using regression analysis, we retrospectively predicted associations between concentrations of several components of MSC-CM and its biological activity to stimulate human dermal fibroblast and endothelial cell migration in vitro as routine examples of potency assays for cell-based products. We also demonstrated that the cell culture medium might affect MSC-CM biological activity to varying degrees depending on the potency assay type. Furthermore, we showed that regression analysis might help to overcome donor variability. The suggested approaches might be successfully applied for other cell types if their secretome was shown to be promising for application in regenerative medicine.
Collapse
Affiliation(s)
- Georgy Sagaradze
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, 27-10, Lomonosovsky av., Moscow 119191, Russia.
- Faculty of Medicine, Lomonosov Moscow State University, 27-1, Lomonosovsky av., Moscow 119192, Russia.
| | - Olga Grigorieva
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, 27-10, Lomonosovsky av., Moscow 119191, Russia.
| | - Peter Nimiritsky
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, 27-10, Lomonosovsky av., Moscow 119191, Russia.
- Faculty of Medicine, Lomonosov Moscow State University, 27-1, Lomonosovsky av., Moscow 119192, Russia.
| | - Nataliya Basalova
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, 27-10, Lomonosovsky av., Moscow 119191, Russia.
- Faculty of Medicine, Lomonosov Moscow State University, 27-1, Lomonosovsky av., Moscow 119192, Russia.
| | - Natalia Kalinina
- Faculty of Medicine, Lomonosov Moscow State University, 27-1, Lomonosovsky av., Moscow 119192, Russia.
| | - Zhanna Akopyan
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, 27-10, Lomonosovsky av., Moscow 119191, Russia.
- Faculty of Medicine, Lomonosov Moscow State University, 27-1, Lomonosovsky av., Moscow 119192, Russia.
| | - Anastasia Efimenko
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, 27-10, Lomonosovsky av., Moscow 119191, Russia.
- Faculty of Medicine, Lomonosov Moscow State University, 27-1, Lomonosovsky av., Moscow 119192, Russia.
| |
Collapse
|
9
|
Tanrıverdi AK, Polat O, Elçin AE, Ahlat O, Gürman G, Günalp M, Oğuz AB, Genç S, Elçin YM. Mesenchymal stem cell transplantation in polytrauma: Evaluation of bone and liver healing response in an experimental rat model. Eur J Trauma Emerg Surg 2019; 46:53-64. [PMID: 30820597 DOI: 10.1007/s00068-019-01101-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 02/25/2019] [Indexed: 12/16/2022]
Abstract
PURPOSE Trauma is the most common cause of death of young people in the world. As known, mesenchymal stem cells (MSCs) accelerate tissue regeneration mechanisms. In our study, we aimed to investigate the effects of MSCs transplantation on the healing of liver and bone tissue by considering trauma secondary inflammatory responses. METHODS 56 adult Wistar-albino rats were divided into two groups: the polytrauma (liver and bone) (n = 28), and the liver trauma group (n = 28). At 36 h and 5th day after surgery, both rats with polytrauma and with isolated liver injury received either intravenous (IV) or intraperitoneal (IP) injections of MSCs (one million cells per kg body weight). Untreated groups received IV and IP saline injections. At day 21 after surgery, liver, tibia and fibula of the subjects were excised and evaluated for histopathologic and histomorphometric examination. Additionally, whole blood count (white blood cells, hemoglobin and platelets), C-reactive protein (CRP), glucose, alanine aminotransferase (ALT), aspartate aminotransferase (AST), albumin, blood gas, and trauma markers interleukin-1B (IL-1B), interleukin-6 (IL-6), and tumor necrosis factor alpha (TNF alpha) levels were investigated. RESULTS In general, MSC transplantations were well tolerated by the subjects. It was found that ALT, CRP, albumin were significantly lower in rats which received MSCs (p < 0.001). Inflammation of the liver and bone tissue in the MSC-injected rats were significantly lower than that of the untreated groups. CONCLUSIONS Herewith we have shown that MSC infusion in posttraumatic rats leads to less aggressive and more effective consequences on liver and bone tissue healing. Human MSC treatment for trauma is still in early stages of development; thus standard protocols, and patient inclusion criteria should be established beforehand clinical trials.
Collapse
Affiliation(s)
- Ayça Koca Tanrıverdi
- Department of Emergency Medicine, School of Medicine, Ankara University, Ankara, Turkey.
| | - Onur Polat
- Department of Emergency Medicine, School of Medicine, Ankara University, Ankara, Turkey
| | - Ayşe Eser Elçin
- Tissue Engineering, Biomaterials and Nanobiotechnology Laboratory, Ankara University Faculty of Science, Ankara, Turkey.,Stem Cell Institute, Ankara University, Ankara, Turkey
| | - Ozan Ahlat
- Division of Pathology, Faculty of Veterinary Medicine, Ankara University, Ankara, Turkey
| | - Günhan Gürman
- Stem Cell Institute, Ankara University, Ankara, Turkey.,Department of Hematology, School of Medicine, Ankara University, Ankara, Turkey
| | - Müge Günalp
- Department of Emergency Medicine, School of Medicine, Ankara University, Ankara, Turkey
| | - Ahmet Burak Oğuz
- Department of Emergency Medicine, School of Medicine, Ankara University, Ankara, Turkey
| | - Sinan Genç
- Department of Emergency Medicine, School of Medicine, Ankara University, Ankara, Turkey
| | - Yaşar Murat Elçin
- Tissue Engineering, Biomaterials and Nanobiotechnology Laboratory, Ankara University Faculty of Science, Ankara, Turkey. .,Biovalda Health Technologies, Inc, Ankara, Turkey. .,Faculty of Science, Biochemistry Division, Ankara University, Tandogan, 06100, Ankara, Turkey.
| |
Collapse
|
10
|
Ulum B, Teker HT, Sarikaya A, Balta G, Kuskonmaz B, Uckan-Cetinkaya D, Aerts-Kaya F. Bone marrow mesenchymal stem cell donors with a high body mass index display elevated endoplasmic reticulum stress and are functionally impaired. J Cell Physiol 2018; 233:8429-8436. [PMID: 29797574 DOI: 10.1002/jcp.26804] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 04/30/2018] [Indexed: 02/06/2023]
Abstract
Bone marrow mesenchymal stem cells (BM-MSCs) are promising candidates for regenerative medicine purposes. The effect of obesity on the function of BM-MSCs is currently unknown. Here, we assessed how obesity affects the function of BM-MSCs and the role of endoplasmic reticulum (ER) stress and the unfolded protein response (UPR) therein. BM-MSCs were obtained from healthy donors with a normal (<25) or high (>30) body mass index (BMI). High-BMI BM-MSCs displayed severely impaired osteogenic and diminished adipogenic differentiation, decreased proliferation rates, increased senescence, and elevated expression of ER stress-related genes ATF4 and CHOP. Suppression of ER stress using tauroursodeoxycholic acid (TUDCA) and 4-phenylbutyrate (4-PBA) resulted in partial recovery of osteogenic differentiation capacity, with a significant increase in the expression of ALPL and improvement in the UPR. These data indicate that BMI is important during the selection of BM-MSC donors for regenerative medicine purposes and that application of high-BMI BM-MSCs with TUDCA or 4-PBA may improve stem cell function. However, whether this improvement can be translated into an in vivo clinical advantage remains to be assessed.
Collapse
Affiliation(s)
- Baris Ulum
- Department of Stem Cell Sciences, Graduate School of Health Sciences, Center for Stem Cell Research and Development, Hacettepe University, Ankara, Turkey
| | - Hikmet Taner Teker
- Department of Stem Cell Sciences, Graduate School of Health Sciences, Center for Stem Cell Research and Development, Hacettepe University, Ankara, Turkey
| | - Aysun Sarikaya
- Department of Stem Cell Sciences, Graduate School of Health Sciences, Center for Stem Cell Research and Development, Hacettepe University, Ankara, Turkey
| | - Gunay Balta
- Department of Stem Cell Sciences, Graduate School of Health Sciences, Center for Stem Cell Research and Development, Hacettepe University, Ankara, Turkey.,Department of Pediatrics, Faculty of Medicine, Division of Hematology, Hacettepe University, Ankara, Turkey
| | - Baris Kuskonmaz
- Department of Pediatrics, Faculty of Medicine, Division of Hematology, Hacettepe University, Ankara, Turkey
| | - Duygu Uckan-Cetinkaya
- Department of Stem Cell Sciences, Graduate School of Health Sciences, Center for Stem Cell Research and Development, Hacettepe University, Ankara, Turkey.,Department of Pediatrics, Faculty of Medicine, Division of Hematology, Hacettepe University, Ankara, Turkey
| | - Fatima Aerts-Kaya
- Department of Stem Cell Sciences, Graduate School of Health Sciences, Center for Stem Cell Research and Development, Hacettepe University, Ankara, Turkey
| |
Collapse
|
11
|
Abstract
Tissue engineering-based regenerative applications can involve the use of stem cells for the treatment of non-healing wounds. Multipotent mesenchymal stem cells have become a focus of skin injury treatments along with many other injury types owing to their unprecedented advantages. However, there are certain limitations concerning the solo use of stem cells in skin wound repair. Natural bioactive extracellular matrix-based scaffolds have great potential for overcoming these limitations by supporting the regenerative activity and localization of stem cells. This chapter describes the use of bone marrow mesenchymal stem cells together with decellularized bovine small intestinal submucosa (SIS), for the treatment of a critical-sized full-thickness skin defect in a small animal model.
Collapse
|
12
|
Elçin AE, Parmaksiz M, Dogan A, Seker S, Durkut S, Dalva K, Elçin YM. Differential gene expression profiling of human adipose stem cells differentiating into smooth muscle-like cells by TGFβ1/BMP4. Exp Cell Res 2017; 352:207-217. [DOI: 10.1016/j.yexcr.2017.02.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 02/02/2017] [Accepted: 02/05/2017] [Indexed: 12/18/2022]
|
13
|
Besalti O, Aktas Z, Can P, Akpinar E, Elcin AE, Elcin YM. The use of autologous neurogenically-induced bone marrow-derived mesenchymal stem cells for the treatment of paraplegic dogs without nociception due to spinal trauma. J Vet Med Sci 2016; 78:1465-1473. [PMID: 27301583 PMCID: PMC5059374 DOI: 10.1292/jvms.15-0571] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The aim of this study was to investigate the effects of percutaneous transplanted autologous neurogenically-induced bone marrow-derived mesenchymal stem cells (NIBM-MSCs) in paraplegic dogs without deep pain perception (DPP) secondary to external spinal trauma. Thirteen client owned dogs that had failed in improvement neurologically at least 42 days after conservative management, decompression and decompression-stabilization were included in the study. Each dog received two doses of autologous 5.0 × 106 NIBM-MSCs suspension, which were positive to 2',3'-Cyclic-nucleotide-3'-phosphodiesterase (CNPase) and Microtubule-associated protein 2 (MAP-2), as well as to Glial fibrillary acidic protein (GFAP) and beta III tubulin. The cells were injected into the spinal cord through the hemilaminectomy or laminectomy defects percutaneously with 21 days interval for 2 times. The results were evaluated using Texas Spinal Cord Injury Scale (TSCIS), somatosensory evoked potentials (SEP) and motor evoked potentials (MEP) at the admission time, cell transplantation procedures and during 2, 5, 7 and 12th months after the second cell transplantation. Improvement after cell transplantation in gait, nociception, proprioception, SEP and MEP results was observed in just 2 cases, and only gait score improvement was seen in 6 cases, and no improvement was recorded in 5 cases. All progresses were observed until 2nd month after the second cell transplantation, however, there was no improvement after this period. In conclusion, percutaneous transplantation of autologous NIBM-MSCs is a promising candidate modality for cases with spinal cord injury after spinal trauma and poor prognosis.
Collapse
Affiliation(s)
- Omer Besalti
- Ankara University Faculty of Veterinary Medicine, Department of Surgery, Ankara, Turkey
| | | | | | | | | | | |
Collapse
|
14
|
Beeravolu N, Khan I, McKee C, Dinda S, Thibodeau B, Wilson G, Perez-Cruet M, Bahado-Singh R, Chaudhry GR. Isolation and comparative analysis of potential stem/progenitor cells from different regions of human umbilical cord. Stem Cell Res 2016; 16:696-711. [PMID: 27107345 DOI: 10.1016/j.scr.2016.04.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 04/09/2016] [Accepted: 04/11/2016] [Indexed: 12/16/2022] Open
|
15
|
Functional characteristics of mesenchymal stem cells derived from the adipose tissue of a patient with achondroplasia. In Vitro Cell Dev Biol Anim 2016; 52:545-54. [PMID: 27059327 DOI: 10.1007/s11626-016-0008-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Accepted: 02/08/2016] [Indexed: 10/22/2022]
Abstract
Mesenchymal stem cells (MSCs) can be isolated from various tissues including bone marrow, adipose tissue, skin dermis, and umbilical Wharton's jelly as well as injured tissues. MSCs possess the capacity for self-renewal and the potential for differentiation into adipogenic, osteogenic, and chondrogenic lineages. However, the characteristics of MSCs in injured tissues, such as achondroplasia (ACH), are not well known. In this study, we isolated MSCs from human subcutaneous adipose (ACH-SAMSCs) tissue and circumjacent human adipose tissue of the cartilage (ACH-CAMSCs) from a patient with ACH. We then analyzed the characterization of ACH-SAMSCs and ACH-CAMSCs, compared with normal human dermis-derived MSCs (hDMSCs). In flow cytometry analysis, the isolated ACH-MSCs expressed low levels of CD73, CD90, and CD105, compared with hDMSCs. Moreover, both ACH- SAMSCs and ACH-CAMSCs had constitutionally overactive fibroblast growth factor receptor 3 (FGFR3) and exhibited significantly reduced osteogenic differentiation, compared to enhanced adipogenic differentiation. The activity of extracellular signal-regulated kinases 1/2 (ERK1/2) and p38 mitogen-activated protein kinases (p38 MAPK) was increased in ACH-MSCs. In addition, the efficacy of osteogenic differentiation was slightly restored in osteogenic differentiation medium with MAPKs inhibitors. These results suggest that they play essential roles in MSC differentiation toward adipogenesis in ACH pathology. In conclusion, the identification of the characteristics of ACH-MSCs and the favoring of adipogenic differentiation via the FGFR3/MAPK axis might help to elucidate the pathogenic mechanisms relevant to other skeletal diseases and could provide targets for therapeutic interventions.
Collapse
|
16
|
AKTAŞ SH, AKBULUT H, ELÇİN AE, PARMAKSIZ M, KESKİN AA, ÇÖLERİ CİHAN A, ELÇİN YM, İÇLİ F. Baculoviral vector loaded mesenchymal stem cells as efficient gene therapy tools for cancer treatment. Turk J Biol 2016. [DOI: 10.3906/biy-1601-76] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
17
|
Parmaksiz M, Elcin AE, Elcin YM. Decellularization of bovine small intestinal submucosa and its use for the healing of a critical-sized full-thickness skin defect, alone and in combination with stem cells, in a small rodent model. J Tissue Eng Regen Med 2015; 11:1754-1765. [DOI: 10.1002/term.2071] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Revised: 05/27/2015] [Accepted: 06/12/2015] [Indexed: 12/11/2022]
Affiliation(s)
- Mahmut Parmaksiz
- Tissue Engineering, Biomaterials and Nanobiotechnology Laboratory; Ankara University Faculty of Science and Ankara University Stem Cell Institute; Ankara Turkey
| | - A. Eser Elcin
- Tissue Engineering, Biomaterials and Nanobiotechnology Laboratory; Ankara University Faculty of Science and Ankara University Stem Cell Institute; Ankara Turkey
| | - Y. Murat Elcin
- Tissue Engineering, Biomaterials and Nanobiotechnology Laboratory; Ankara University Faculty of Science and Ankara University Stem Cell Institute; Ankara Turkey
| |
Collapse
|
18
|
Pan X, Peng L, Yin G. Downregulation of Annexin A1 by short hairpin RNA inhibits the osteogenic differentiation of rat bone marrow-derived mesenchymal stem cells. Int J Mol Med 2015; 36:406-14. [PMID: 26063293 PMCID: PMC4501652 DOI: 10.3892/ijmm.2015.2243] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 05/28/2015] [Indexed: 12/23/2022] Open
Abstract
Annexin A1 (ANX A1) is essential in cell differentiation and proliferation. However, the role of ANX A1 in bone marrow-derived mesenchymal stem cell (BM-MSC) osteogenic differentiation and proliferation remains unclear. To investigate whether endogenous ANX A1 influences BM-MSC proliferation and osteogenic differentiation, a stable ANX A1-knockdown cell line was generated using short hairpin RNA (shRNA). The proliferation rate of BM-MSCs was analyzed by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide proliferation assay. Additionally, BM-MSCs were differentiated into osteoblasts and subsequently used to isolate total proteins to analyze the expression of ANX A1. Cell differentiation was assayed using Alizarin red S staining. The results revealed that the knockdown of ANX A1 in BM-MSCs exerts no apparent effect on the proliferation rate under normal conditions, however, following exposure to an osteogenic medium, downregulation of ANX A1 protected cells from the effect of osteogenic medium-induced inhibition of cell proliferation. Silencing ANX A1 with shRNA significantly inhibited the phosphorylation of extracellular signal-regulated kinase 1/2 and the expression of differentiation-associated genes (including runt-related transcription factor 2, osteopontin and osteocalcin) during osteogenesis and resulted in reduced differentiation of BM-MSCs. The results indicate the potential role of ANX A1 in the regulation of BM-MSC proliferation and osteogenic differentiation.
Collapse
Affiliation(s)
- Xinyuan Pan
- Department of Plastic and Aesthetic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Liu Peng
- Department of Plastic and Aesthetic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Guoqian Yin
- Department of Plastic and Aesthetic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
19
|
|