2
|
Contribution of three-dimensional architecture and tumor-associated fibroblasts to hepcidin regulation in breast cancer. Oncogene 2018; 37:4013-4032. [PMID: 29695834 PMCID: PMC6054540 DOI: 10.1038/s41388-018-0243-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 02/02/2018] [Accepted: 03/06/2018] [Indexed: 01/08/2023]
Abstract
Hepcidin is a peptide hormone that negatively regulates iron efflux and plays an important role in controlling the growth of breast tumors. In patients with breast cancer, the combined expression of hepcidin and its membrane target, ferroportin, predict disease outcome. However, mechanisms that control hepcidin expression in breast cancer cells remain largely unknown. Here we use three-dimensional breast cancer spheroids derived from cell lines and breast cancer patients to probe mechanisms of hepcidin regulation in breast cancer. We observe that the extent of hepcidin induction and pathways of its regulation are markedly changed in breast cancer cells grown in three dimensions. In monolayer culture, BMPs, particularly BMP6, regulate hepcidin transcription. When breast cancer cells are grown as spheroids, there is a >10 fold induction in hepcidin transcripts. Microarray analysis combined with knockdown experiments reveal that GDF-15 is the primary mediator of this change. The increase in hepcidin as breast cells develop a three-dimensional architecture increases intracellular iron, as indicated by an increase in the iron storage protein ferritin. Immunohistochemical staining of human breast tumors confirms that both GDF-15 and hepcidin are expressed in breast cancer specimens. Further, levels of GDF-15 are significantly correlated with levels of hepcidin at both the mRNA and protein level in patient samples, consistent with a role for GDF-15 in control of hepcidin in human breast tumors. Inclusion of tumor-associated fibroblasts in breast cancer spheroids further induces hepcidin. This induction is mediated by fibroblast-dependent secretion of IL-6. Breast cancer cells grown as spheroids are uniquely receptive to IL-6-dependent induction of hepcidin by tumor-associated fibroblasts, since IL-6 does not induce hepcidin in cells grown as monolayers. Collectively, our results suggest a new paradigm for tumor-mediated control of iron through the control of hepcidin by tumor architecture and the breast tumor microenvironment.
Collapse
|
3
|
Krishnan ML, Van Steenwinckel J, Schang AL, Yan J, Arnadottir J, Le Charpentier T, Csaba Z, Dournaud P, Cipriani S, Auvynet C, Titomanlio L, Pansiot J, Ball G, Boardman JP, Walley AJ, Saxena A, Mirza G, Fleiss B, Edwards AD, Petretto E, Gressens P. Integrative genomics of microglia implicates DLG4 (PSD95) in the white matter development of preterm infants. Nat Commun 2017; 8:428. [PMID: 28874660 PMCID: PMC5585205 DOI: 10.1038/s41467-017-00422-w] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 06/28/2017] [Indexed: 12/12/2022] Open
Abstract
Preterm birth places infants in an adverse environment that leads to abnormal brain development and cerebral injury through a poorly understood mechanism known to involve neuroinflammation. In this study, we integrate human and mouse molecular and neuroimaging data to investigate the role of microglia in preterm white matter damage. Using a mouse model where encephalopathy of prematurity is induced by systemic interleukin-1β administration, we undertake gene network analysis of the microglial transcriptomic response to injury, extend this by analysis of protein-protein interactions, transcription factors and human brain gene expression, and translate findings to living infants using imaging genomics. We show that DLG4 (PSD95) protein is synthesised by microglia in immature mouse and human, developmentally regulated, and modulated by inflammation; DLG4 is a hub protein in the microglial inflammatory response; and genetic variation in DLG4 is associated with structural differences in the preterm infant brain. DLG4 is thus apparently involved in brain development and impacts inter-individual susceptibility to injury after preterm birth.Inflammation mediated by microglia plays a key role in brain injury associated with preterm birth, but little is known about the microglial response in preterm infants. Here, the authors integrate molecular and imaging data from animal models and preterm infants, and find that microglial expression of DLG4 plays a role.
Collapse
Affiliation(s)
- Michelle L Krishnan
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, SE1 7EH, UK
| | - Juliette Van Steenwinckel
- PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, 75014, France
- PremUP, F-75006, Paris, France
| | - Anne-Laure Schang
- PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, 75014, France
- PremUP, F-75006, Paris, France
| | - Jun Yan
- PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, 75014, France
- PremUP, F-75006, Paris, France
| | - Johanna Arnadottir
- PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, 75014, France
- PremUP, F-75006, Paris, France
| | - Tifenn Le Charpentier
- PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, 75014, France
- PremUP, F-75006, Paris, France
| | - Zsolt Csaba
- PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, 75014, France
- PremUP, F-75006, Paris, France
| | - Pascal Dournaud
- PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, 75014, France
- PremUP, F-75006, Paris, France
| | - Sara Cipriani
- PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, 75014, France
- PremUP, F-75006, Paris, France
| | - Constance Auvynet
- Pierre and Marie Curie University, UMRS-1135, Sorbonne Paris Cité, F-75006, Paris, France
| | - Luigi Titomanlio
- PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, 75014, France
| | - Julien Pansiot
- PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, 75014, France
- PremUP, F-75006, Paris, France
| | - Gareth Ball
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, SE1 7EH, UK
| | - James P Boardman
- Medical Research Council/University of Edinburgh Centre for Reproductive Health, Edinburgh, EH16 4TJ, UK
| | - Andrew J Walley
- Cell Biology and Genetics Research Centre, St. George's University of London, London, SW17 0RE, UK
| | - Alka Saxena
- Genomics Core Facility, NIHR Biomedical Research Centre, Guy's and St. Thomas' NHS Foundation Trust, London, SE1 9RT, UK
| | - Ghazala Mirza
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London, WC1N 3BG, UK
- Epilepsy Society, Chalfont-St-Peter, Bucks, SL9 0RJ, UK
| | - Bobbi Fleiss
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, SE1 7EH, UK
- PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, 75014, France
- PremUP, F-75006, Paris, France
| | - A David Edwards
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, SE1 7EH, UK.
| | - Enrico Petretto
- Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore.
| | - Pierre Gressens
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, SE1 7EH, UK.
- PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, 75014, France.
- PremUP, F-75006, Paris, France.
| |
Collapse
|
5
|
Minashima T, Zhang Y, Lee Y, Kirsch T. Lithium protects against cartilage degradation in osteoarthritis. Arthritis Rheumatol 2014; 66:1228-36. [PMID: 24470226 DOI: 10.1002/art.38373] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 01/16/2014] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To determine the actions of lithium chloride (LiCl) on catabolic events in human articular chondrocytes, and the effects of LiCl on the progression and severity of cartilage degradation in interleukin-1β (IL-1β)-treated mouse knee joints and after surgical induction of osteoarthritis (OA) in a mouse model. METHODS Human articular chondrocytes were treated with LiCl followed by IL-1β, and the expression levels of catabolic genes were determined by real-time polymerase chain reaction. To understand the mechanism by which LiCl affects catabolic events in articular chondrocytes after IL-1β treatment, the activation of NF-κB was determined using luciferase reporter assays, and the activities of MAPKs and the STAT-3 signaling pathway were determined by immunoblot analysis of total cell lysates. Cultures of mouse femoral head explants treated with IL-1β and a mouse model of surgically induced OA were used to determine the effects of LiCl on proteoglycan loss and cartilage degradation. RESULTS LiCl treatment resulted in decreased catabolic marker messenger RNA levels and activation of NF-κB, p38 MAPK, and STAT-3 signaling in IL-1β-treated articular chondrocytes. Furthermore, LiCl directly inhibited IL-6-stimulated activation of STAT-3 signaling. Consequently, the loss of proteoglycan and severity of cartilage destruction in LiCl-treated mouse knee joints 8 weeks after OA induction surgery or in LiCl-treated mouse femoral head explants after IL-1β treatment were markedly reduced compared to that in vehicle-treated joints or explants. CONCLUSION LiCl reduced catabolic events in IL-1β-treated human articular chondrocytes and attenuated the severity of cartilage destruction in IL-1β-treated mouse femoral head explants and in the knee joints of mice with surgically induced OA, acting via inhibition of the activities of the NF-κB, p38, and STAT-3 signaling pathways.
Collapse
Affiliation(s)
- Takeshi Minashima
- New York University School of Medicine and Hospital for Joint Diseases, New York, New York
| | | | | | | |
Collapse
|