1
|
Ashton A, Clark J, Fedo J, Sementilli A, Fragoso YD, McCaffery P. Retinoic Acid Signalling in the Pineal Gland Is Conserved across Mammalian Species and Its Transcriptional Activity Is Inhibited by Melatonin. Cells 2023; 12:286. [PMID: 36672220 PMCID: PMC9856906 DOI: 10.3390/cells12020286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/04/2023] [Accepted: 01/04/2023] [Indexed: 01/13/2023] Open
Abstract
The pineal gland is integral to the circadian timing system due to its role in nightly melatonin production. Retinoic acid (RA) is a potent regulator of gene transcription and has previously been found to exhibit diurnal changes in synthesis and signalling in the rat pineal gland. This study investigated the potential for the interaction of these two systems. PCR was used to study gene expression in mouse and human pineal glands, ex-vivo organotypic cultured rat pineal gland and cell lines. The mouse and human pineal glands were both found to express the necessary components required for RA signalling. RA influences the circadian clock in the brain, therefore the short-term effect of RA on clock gene expression was determined in ex vivo rat pineal glands but was not found to rapidly regulate Per1, Per2, Bmal1, or Cry1. The interaction between RA and melatonin was also investigated and, unexpectedly, melatonin was found to suppress the induction of gene transcription by RA. This study demonstrates that pineal expression of the RA signalling system is conserved across mammalian species. There is no short-term regulation of the circadian clock but an inhibitory effect of melatonin on RA transcriptional activity was demonstrated, suggesting that there may be functional cross-talk between these systems.
Collapse
Affiliation(s)
- Anna Ashton
- Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Jason Clark
- Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Julia Fedo
- Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Angelo Sementilli
- Department of Physiopathology, Universidade Metropolitana de Santos and Centro, Universitario Lusíada, Santos 11050-071, SP, Brazil
| | - Yara D. Fragoso
- Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
- Department of Post Graduate Studies, Universidade Metropolitana de Santos, Santos 11045-002, SP, Brazil
| | - Peter McCaffery
- Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
| |
Collapse
|
2
|
Trapani I, Toriello E, de Simone S, Colella P, Iodice C, Polishchuk EV, Sommella A, Colecchi L, Rossi S, Simonelli F, Giunti M, Bacci ML, Polishchuk RS, Auricchio A. Improved dual AAV vectors with reduced expression of truncated proteins are safe and effective in the retina of a mouse model of Stargardt disease. Hum Mol Genet 2015; 24:6811-25. [PMID: 26420842 PMCID: PMC4634381 DOI: 10.1093/hmg/ddv386] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 09/14/2015] [Indexed: 01/02/2023] Open
Abstract
Stargardt disease (STGD1) due to mutations in the large ABCA4 gene is the most common inherited macular degeneration in humans. We have shown that dual adeno-associated viral (AAV) vectors effectively transfer ABCA4 to the retina of Abca4-/- mice. However, they express both lower levels of transgene compared with a single AAV and truncated proteins. To increase productive dual AAV concatemerization, which would overcome these limitations, we have explored the use of either various regions of homology or heterologous inverted terminal repeats (ITR). In addition, we tested the ability of various degradation signals to decrease the expression of truncated proteins. We found the highest levels of transgene expression using regions of homology based on either alkaline phosphatase or the F1 phage (AK). The use of heterologous ITR does not decrease the levels of truncated proteins relative to full-length ABCA4 and impairs AAV vector production. Conversely, the inclusion of the CL1 degradation signal results in the selective degradation of truncated proteins from the 5'-half without affecting full-length protein production. Therefore, we developed dual AAV hybrid ABCA4 vectors including homologous ITR2, the photoreceptor-specific G protein-coupled receptor kinase 1 promoter, the AK region of homology and the CL1 degradation signal. We show that upon subretinal administration these vectors are both safe in pigs and effective in Abca4-/- mice. Our data support the use of improved dual AAV vectors for gene therapy of STGD1.
Collapse
Affiliation(s)
- Ivana Trapani
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli 80078, Italy
| | | | - Sonia de Simone
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli 80078, Italy
| | - Pasqualina Colella
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli 80078, Italy
| | - Carolina Iodice
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli 80078, Italy
| | - Elena V Polishchuk
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli 80078, Italy
| | - Andrea Sommella
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli 80078, Italy
| | - Linda Colecchi
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli 80078, Italy
| | - Settimio Rossi
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, Second University of Naples, 80121, Naples, Italy
| | - Francesca Simonelli
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, Second University of Naples, 80121, Naples, Italy
| | - Massimo Giunti
- Department of Veterinary Medical Sciences, University of Bologna, Bologna 40064, Italy and
| | - Maria L Bacci
- Department of Veterinary Medical Sciences, University of Bologna, Bologna 40064, Italy and
| | - Roman S Polishchuk
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli 80078, Italy
| | - Alberto Auricchio
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli 80078, Italy, Medical Genetics, Department of Translational Medicine, Federico II University, Naples 80131, Italy
| |
Collapse
|
3
|
Balse E, Tessier LH, Forster V, Roux MJ, Sahel JA, Picaud S. Glycine receptors in a population of adult mammalian cones. J Physiol 2006; 571:391-401. [PMID: 16396929 PMCID: PMC1796802 DOI: 10.1113/jphysiol.2005.100891] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Glycinergic interplexiform cells provide a feedback signal from the inner retina to the outer retina. To determine if cones receive such a signal, glycine was applied on cultured porcine cone photoreceptors recorded with the patch clamp technique. A minor population of cone photoreceptors was found to generate large currents in response to puff application of glycine. These currents reversed close to the calculated equilibrium potential for chloride ions. These glycine-elicited currents were sensitive to strychnine but not to picrotoxin consistent with the expression of alpha-beta-heteromeric glycine receptors. Glycine receptors were also activated by taurine and beta-alanine. The glycine receptor antibody mAb4a labelled a minority of the cone photoreceptors identified by an antibody specific for cone arrestin. Finally, expression of the beta subunit of the glycine receptor was demonstrated by single cell RT-PCR in a similar proportion (approximately 13%) of cone photoreceptors freshly isolated by lectin-panning. The identity of cone photoreceptors was assessed by their specific expression of the cone arrestin mRNA. The population of cone photoreceptors expressing the glycine receptor was not correlated to a specific colour-sensitive subtype as demonstrated by single cell RT-PCR experiments using primers for S opsin, cone arrestin and glycine receptor beta subunit. This glycine receptor expression in a minority of cones defines a new cone population suggesting an unexpected role for glycine in the visual information processing in the outer retina.
Collapse
Affiliation(s)
- E Balse
- Laboratoire de Physiopathologie Cellulaire et Moléculaire de la Rétine, INSERM U592, Hôpital Saint-Antoine, Bâtiment Kourilsky, 184, rue du Faubourg Saint-Antoine, 75 571 Paris cedex 12, France
| | | | | | | | | | | |
Collapse
|