1
|
Monahan-Giovanelli H, Pinedo CA, Gage DJ. Architecture of infection thread networks in developing root nodules induced by the symbiotic bacterium Sinorhizobium meliloti on Medicago truncatula. PLANT PHYSIOLOGY 2006; 140:661-70. [PMID: 16384905 PMCID: PMC1361332 DOI: 10.1104/pp.105.072876] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
During the course of the development of nitrogen-fixing root nodules induced by Sinorhizobium meliloti on the model plant Medicago truncatula, tubules called infection threads are cooperatively constructed to deliver the bacterial symbiont from the root surface to cells in the interior of the root and developing nodule. Three-dimensional reconstructions of infection threads inside M. truncatula nodules showed that the threads formed relatively simple, tree-like networks. Some characteristics of thread networks, such as branch length, branch density, and branch surface-to-volume ratios, were remarkably constant across nodules in different stages of development. The overall direction of growth of the networks changed as nodules developed. In 5-d-old nodules, the overall growth of the network was directed inward toward the root. However, well-defined regions of these young networks displayed an outward growth bias, indicating that they were likely in the process of repolarizing their direction of development in response to the formation of the outward-growing nodule meristem. In 10- and 30-d-old nodules, the branches of the network grew outward toward the meristem and away from the roots on which the nodules developed.
Collapse
Affiliation(s)
- Hannah Monahan-Giovanelli
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269-3125, USA
| | | | | |
Collapse
|
2
|
Abstract
This review presents a comparison between the complex genetic regulatory networks that control nitrogen fixation in three representative rhizobial species, Rhizobium meliloti, Bradyrhizobium japonicum, and Azorhizobium caulinodans. Transcription of nitrogen fixation genes (nif and fix genes) in these bacteria is induced primarily by low-oxygen conditions. Low-oxygen sensing and transmission of this signal to the level of nif and fix gene expression involve at least five regulatory proteins, FixL, FixJ, FixK, NifA, and RpoN (sigma 54). The characteristic features of these proteins and their functions within species-specific regulatory pathways are described. Oxygen interferes with the activities of two transcriptional activators, FixJ and NifA. FixJ activity is modulated via phosphorylation-dephosphorylation by the cognate sensor hemoprotein FixL. In addition to the oxygen responsiveness of the NifA protein, synthesis of NifA is oxygen regulated at the level of transcription. This type of control includes FixLJ in R. meliloti and FixLJ-FixK in A. caulinodans or is brought about by autoregulation in B. japonicum. NifA, in concert with sigma 54 RNA polymerase, activates transcription from -24/-12-type promoters associated with nif and fix genes and additional genes that are not directly involved in nitrogen fixation. The FixK proteins constitute a subgroup of the Crp-Fnr family of bacterial regulators. Although the involvement of FixLJ and FixK in nifA regulation is remarkably different in the three rhizobial species discussed here, they constitute a regulatory cascade that uniformly controls the expression of genes (fixNOQP) encoding a distinct cytochrome oxidase complex probably required for bacterial respiration under low-oxygen conditions. In B. japonicum, the FixLJ-FixK cascade also controls genes for nitrate respiration and for one of two sigma 54 proteins.
Collapse
Affiliation(s)
- H M Fischer
- Mikrobiologisches Institut, Eidgenössische Technische Hochschule, ETH-Zentrum, Zürich, Switzerland
| |
Collapse
|
3
|
Grob P, Michel P, Hennecke H, Göttfert M. A novel response-regulator is able to suppress the nodulation defect of a Bradyrhizobium japonicum nodW mutant. MOLECULAR & GENERAL GENETICS : MGG 1993; 241:531-41. [PMID: 8264528 DOI: 10.1007/bf00279895] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The two-component regulatory system Nod-VW of Bradyrhizobium japonicum is essential for the nodulation of the legume host plants Vigna radiata, V. unguiculata and Macroptilium atropurpureum. The NodV protein shares homology with the sensor-kinases, whereas the NodW protein is a member of the response-regulator class. We report here the identification of a new B. japonicum DNA region that is able to suppress the phenotypic defect of a nodW mutant, provided that this region is expressed from a foreign promoter. The minimal complementing region, which itself is not essential for nodulation in a nodW+ background, consists of one gene designated nwsB (nodW-suppressor). The deduced amino acid sequence of the nwsB gene product shows a high degree of homology to NodW. The nws B gene is preceded by a long open reading frame, nwsA, whose putative product appears to be a sensor-kinase. Downstream of nwsB, an open reading frame encoding a second putative response-regulator was identified. Interspecies hybridization revealed the presence of nwsAB-like DNA also in other Bradyrhizobium strains. Using nwsB'-'lacZ fusions, the nwsB gene was found to be expressed rather weakly in B. japonicum. This low level of expression is obviously not sufficient to compensate for a nodW- defect, whereas strong overexpression of nwsB is a condition that leads to suppression of the nodW- mutation.
Collapse
Affiliation(s)
- P Grob
- Mikrobiologisches Institut, Eidgenössische Technische Hochschule, ETH-Zentrum, Zürich, Switzerland
| | | | | | | |
Collapse
|
4
|
|
5
|
Abstract
This review focuses on the functions of nodulation (nod) genes in the interaction between rhizobia and legumes. The nod genes are the key bacterial determinants of the signal exchange between the two symbiotic partners. The product of the nodD gene is a transcriptional activator protein that functions as receptor for a flavonoid plant compound. This signaling induces the expression of a set of nod genes that produces several related Nod factors, substituted lipooligosaccharides. The Nod factors are then excreted and serve as signals sent from the bacterium to the plant. The plant responds with the development of a root nodule. The plant-derived flavonoid, as well as the rhizobial signal, must have distinct chemical structures which guarantee that only matching partners are brought together.
Collapse
Affiliation(s)
- M Göttfert
- Mikrobiologisches Institut, Eidgenössische Technische Hochschule Zürich, Switzerland
| |
Collapse
|
6
|
Sharma PK, Kundu BS, Dogra RC. Molecular mechanism of host specificity in legume-rhizobium symbiosis. Biotechnol Adv 1993; 11:741-79. [PMID: 14538056 DOI: 10.1016/0734-9750(93)90002-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Rhizobium - legume symbiosis is a highly specific interaction between the two partners. Host specificity is evident at early stages of infection and results from multiple interactions involving signalling among bacteria and host plants. Host specific plant signals (flavanoids) convert the NodD protein to an active form and its binding with nod box initiates the transcription of inducible nod operons. Common nod genes (nodABC) code for an extracellular mitogenic Nod factor which is required for nodule organogenesis. Host specific genes (hsn) modify the Nod factor to induce root hair deformation on specific hosts. The structure of Nod factor controls host range distinction between species and biovars of rhizobia. Interactions of lectins and Exopolysaccharide/Lipopolysaccharide result in host specific attachment of Rhizobium and its subsequent invasion. Change in Expopolysaccharide structure by the transfer of hsn genes enables the Rhizobium to bind with heterologous host lectins. Conversely, changes in root lectins via gene manipulation enables the heterologous rhizobia to bind and initiate nodulation on heterologous hosts. Finally, host specific signals are required to initiate nitrogen fixation in nodules that are formed.
Collapse
Affiliation(s)
- P K Sharma
- Department of Microbiology, CCS Haryana Agricultural University, Hisar-125 004, India
| | | | | |
Collapse
|
7
|
Baev N, Schultze M, Barlier I, Ha DC, Virelizier H, Kondorosi E, Kondorosi A. Rhizobium nodM and nodN genes are common nod genes: nodM encodes functions for efficiency of nod signal production and bacteroid maturation. J Bacteriol 1992; 174:7555-65. [PMID: 1447128 PMCID: PMC207465 DOI: 10.1128/jb.174.23.7555-7565.1992] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Earlier, we showed that Rhizobium meliloti nodM codes for glucosamine synthase and that nodM and nodN mutants produce strongly reduced root hair deformation activity and display delayed nodulation of Medicago sativa (Baev et al., Mol. Gen. Genet. 228:113-124, 1991). Here, we demonstrate that nodM and nodN genes from Rhizobium leguminosarum biovar viciae restore the root hair deformation activity of exudates of the corresponding R. meliloti mutant strains. Partial restoration of the nodulation phenotypes of these two strains was also observed. In nodulation assays, galactosamine and N-acetylglucosamine could substitute for glucosamine in the suppression of the R. meliloti nodM mutation, although N-acetylglucosamine was less efficient. We observed that in nodules induced by nodM mutants, the bacteroids did not show complete development or were deteriorated, resulting in decreased nitrogen fixation and, consequently, lower dry weights of the plants. This mutant phenotype could also be suppressed by exogenously supplied glucosamine, N-acetylglucosamine, and galactosamine and to a lesser extent by glucosamine-6-phosphate, indicating that the nodM mutant bacteroids are limited for glucosamine. In addition, by using derivatives of the wild type and a nodM mutant in which the nod genes are expressed at a high constitutive level, it was shown that the nodM mutant produces significantly fewer Nod factors than the wild-type strain but that their chemical structures are unchanged. However, the relative amounts of analogs of the cognate Nod signals were elevated, and this may explain the observed host range effects of the nodM mutation. Our data indicate that both the nodM and nodN genes of the two species have common functions and confirm that NodM is a glucosamine synthase with the biochemical role of providing sufficient amounts of the sugar moiety for the synthesis of the glucosamine oligosaccharide signal molecules.
Collapse
Affiliation(s)
- N Baev
- Institute of Genetics, Hungarian Academy of Sciences, Szeged
| | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
Many legumes respond to Rhizobium inoculation by developing unique structures known as nodules on their roots. The development of a legume nodule in which rhizobia convert atmospheric N2 into ammonia is a finely tuned process. Gene expression from both partners of the symbiosis must be temporally and spatially coordinated. Exactly how this coordination takes place is an area of intense study. Nodule morphogenesis appears to be elicited by at least two distinct signals: one from Rhizobium, a product of the nod genes (Nod factor), and a second signal, which is generated within plant tissues after treatment with Nod factor. The identity of the second signal is unknown but changes in the balance of endogenous plant hormones or the sensitivity of plant tissues to these hormones are likely to be involved. These hormonal changes may be triggered by endogenous flavonoids produced by the root in response to inoculation with Rhizobium. There is some controversy as to whether the legume nodule is an organ sui generis or a highly derived lateral root. A resolution of this question may become more critical as attempts to induce nodules on non-legume hosts, such as rice or maize, increase in number and scope. CONTENTS Summary 211 I. Introduction 211 II. Nodule development 213 III. Nodule initiation 220 IV. The second signal for nodule morphogenesis: role for the plant hormones ? 225 V. Lateral root development 229 VI. Are nodules modified lateral roots ? 229 VII. Conclusions and future prospects 231 Acknowledgements and dedication 232 References 232.
Collapse
Affiliation(s)
- Ann M Hirsch
- Department of Biology, University of California-Los Angeles, Los Angeles, CA 90024-1606, USA
| |
Collapse
|
9
|
Baev N, Amar M, Defez R, Iaccarino M. The expression of thenodDandnodABCgenes ofRhizobium leguminosarumis not regulated in response to combined nitrogen. FEMS Microbiol Lett 1992. [DOI: 10.1111/j.1574-6968.1992.tb05464.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
10
|
Cubo MT, Economou A, Murphy G, Johnston AW, Downie JA. Molecular characterization and regulation of the rhizosphere-expressed genes rhiABCR that can influence nodulation by Rhizobium leguminosarum biovar viciae. J Bacteriol 1992; 174:4026-35. [PMID: 1597418 PMCID: PMC206112 DOI: 10.1128/jb.174.12.4026-4035.1992] [Citation(s) in RCA: 110] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
A group of four rhi (rhizosphere-expressed) genes from the symbiotic plasmid of Rhizobium leguminosarum biovar viciae has been characterized. Although mutation of the rhi genes does not normally affect nodulation, in the absence of the closely linked nodulation genes nodFEL, mutations in the rhi genes can influence the nodulation of the vetch Vicia hirsuta. The DNA sequence of the rhi gene region reveals four large open reading frames, three of them constituting an operon (rhiABC) transcribed convergently toward the fourth gene, rhiR. rhiABC are under the positive control of RhiR, the expression of which is repressed by flavonoids that normally induce nod gene expression. This repression, which requires the nodD gene product (the transcriptional activator of nod gene expression), may be due to a cis effect caused by a high level of NodD-dependent expression from the adjacent nodO promoter, which is transcribed divergently from rhiR. RhiR shows significant similarities to a subfamily of transcriptional regulators that includes the LuxR and UvrC-28K proteins. RhiA shows limited homology to a short domain of the lactose permease, LacY, close to a region thought to be involved in substrate binding. No strong homologies were found for the other rhi gene products. It appears that RhiA and RhiB are cytoplasmic, whereas RhiC is a periplasmic protein, since it has a typical N-terminal transit sequence and a rhiC-phoA protein fusion expresses alkaline phosphatase activity. The biochemical role of the rhi genes has not been established, but it appears that they may play a role in the plant-microbe interaction, possibly by allowing the bacteria to metabolize a plant-made metabolite.
Collapse
Affiliation(s)
- M T Cubo
- John Innes Institute, John Innes Centre, Norwich, United Kingdom
| | | | | | | | | |
Collapse
|
11
|
Kondorosi E, Pierre M, Cren M, Haumann U, Buiré M, Hoffmann B, Schell J, Kondorosi A. Identification of NolR, a negative transacting factor controlling the nod regulon in Rhizobium meliloti. J Mol Biol 1991; 222:885-96. [PMID: 1840615 DOI: 10.1016/0022-2836(91)90583-r] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In Rhizobium meliloti, expression of the nodulation genes (nod and nol genes) is under both positive and negative controls. These genes are activated by the products of the three related nodD genes, in conjunction with signal molecules from the host plants. We showed that negative regulation is mediated by a repressor protein, binding to the overlapping nodD1 and nodA as well as to the nodD2 promoters. The encoding gene, termed nolR, was identified and cloned from strain 41. By subcloning, deletion and Tn5 mutagenesis, a region of 594 base-pairs was found to be necessary and sufficient for repressor production in strains of R. meliloti lacking the repressor or in Escherichia coli. Sequence analysis revealed that nolR encodes a 13,349 Da protein, which is in agreement with the molecular weight of the NolR protein, determined after purification by affinity chromatography, utilizing long synthetic DNA multimers of the 21 base-pair conserved repressor-binding sequence. Our data suggest that the native NolR binds to the operator site in dimeric form. The NolR contains a helix-turn-helix motif, which shows homology to the DNA-binding sequences of numerous prokaryotic regulatory proteins such as the repressor XylR or the activator NodD and other members of the LysR family. Comparison of the putative DNA-binding helix-turn-helix motifs of a large number of regulatory proteins pointed to a number of novel regularities in this sequence. Hybridizations with an internal nolR fragment showed that sequences homologous to the nolR gene are present in all R. meliloti isolates tested, even in those that do not produce the repressor. In another species, such as Rhizobium leguminosarum, where NodD is autoregulated, however, such sequences were not detected.
Collapse
MESH Headings
- Amino Acid Sequence
- Bacterial Proteins/genetics
- Bacterial Proteins/isolation & purification
- Base Sequence
- Chromatography, Affinity
- Chromosome Deletion
- Cloning, Molecular
- DNA, Bacterial/genetics
- DNA, Bacterial/isolation & purification
- Escherichia coli/genetics
- Gene Expression Regulation, Bacterial
- Genes, Bacterial
- Genes, Regulator
- Genotype
- Molecular Sequence Data
- Mutagenesis, Insertional
- Nucleic Acid Hybridization
- Plasmids
- Promoter Regions, Genetic
- Recombinant Proteins/isolation & purification
- Repressor Proteins/genetics
- Repressor Proteins/isolation & purification
- Restriction Mapping
- Sequence Homology, Nucleic Acid
- Sinorhizobium meliloti/genetics
- Sinorhizobium meliloti/metabolism
Collapse
Affiliation(s)
- E Kondorosi
- Centre National de la Recherche Scientifique, Institut des Sciences Végétales, Gif-sur-Yvette, France
| | | | | | | | | | | | | | | |
Collapse
|