1
|
Lama R, Fose JM, Martín D, Muñoz IG, Wang ES, Sung PJ, Chemler SR, Wang X. Novel Inhibitors for MDM2-MDM4 E3 Ligase Potently Induce p53-Indepedent Apoptosis in Drug-Resistant Leukemic Cells. Molecules 2025; 30:186. [PMID: 39795242 PMCID: PMC11722259 DOI: 10.3390/molecules30010186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/31/2024] [Accepted: 01/04/2025] [Indexed: 01/13/2025] Open
Abstract
MDM2 and MDM4 are major negative regulators of tumor suppressor p53. Beyond regulating p53, MDM2 possesses p53-independent activity in promoting cell cycle progression and tumorigenesis via its RING domain ubiquitin E3 ligase activity. MDM2 and MDM4 form heterodimer polyubiquitin E3 ligases via their RING domain interaction. Inhibitors disrupting p53 interaction with MDM2/MDM4 are in clinical trials in patients bearing wild-type p53 cancers. However, these inhibitors are not designed to work for p53-null/mutant cancer cells. Owing to the importance of the E3 ligase of MDM2 in its p53-independent oncogenic activity, inhibitors targeting the E3 ligase activity of MDM2-MDM4 are desirable for p53-mutant cancer cells. Here, we report the development of such inhibitors with pro-apoptotic activity in p53-null leukemic cells. Among analogues of MDM2-MDM4 E3 ligase inhibitors, we initially identified MMRi36 as a potent pro-apoptotic compound in p53-null leukemic cells with acquired drug resistance. MMRi36 acts as an activator of MDM2-MDM4 E3 ligase by stabilizing MDM2-MDM4 heterodimers and promotes MDM2/MDM4 degradation in cells. Interestingly, replacement of the sulfur in 1,3,4-thiadiazole MMRi36 with a carbon led to identification of pyrazole MMRi36C that dissociates the MDM2-MDM4 RING heterodimers, inhibits the E3 ligase activity of the complex, and induces p53 protein accumulation, but retains the p53-independent pro-apoptotic activity. A brief SAR study identified a fluorine derivative of MMRi36C with improved pro-apoptotic activity. This study discovered a novel class of compound that targets MDM2-MDM4 ubiquitin E3 ligase activity for apoptosis induction in p53-mutant cancer cells.
Collapse
Affiliation(s)
- Rati Lama
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (R.L.); (P.J.S.)
| | - Joseph M. Fose
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY 14260, USA; (J.M.F.); (S.R.C.)
| | - Diana Martín
- Structural Biology Programme, Spanish National Cancer Research Centre (CNIO), 28009 Madrid, Spain; (D.M.); (I.G.M.)
| | - Inés G. Muñoz
- Structural Biology Programme, Spanish National Cancer Research Centre (CNIO), 28009 Madrid, Spain; (D.M.); (I.G.M.)
| | - Eunice S. Wang
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA;
| | - Pamela J. Sung
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (R.L.); (P.J.S.)
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA;
| | - Sherry R. Chemler
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY 14260, USA; (J.M.F.); (S.R.C.)
| | - Xinjiang Wang
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (R.L.); (P.J.S.)
| |
Collapse
|
2
|
Lama R, Xu C, Galster SL, Querol-García J, Portwood S, Mavis CK, Ruiz FM, Martin D, Wu J, Giorgi MC, Bargonetti J, Wang ES, Hernandez-Ilizaliturri FJ, Koudelka GB, Chemler SR, Muñoz IG, Wang X. Small molecule MMRi62 targets MDM4 for degradation and induces leukemic cell apoptosis regardless of p53 status. Front Oncol 2022; 12:933446. [PMID: 35992795 PMCID: PMC9389462 DOI: 10.3389/fonc.2022.933446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 07/11/2022] [Indexed: 12/15/2022] Open
Abstract
MDM2 and MDM4 proteins are key negative regulators of tumor suppressor p53. MDM2 and MDM4 interact via their RING domains and form a heterodimer polyubiquitin E3 ligase essential for p53 degradation. MDM4 also forms heterodimer E3 ligases with MDM2 isoforms that lack p53-binding domains, which regulate p53 and MDM4 stability. We are working to identify small-molecule inhibitors targeting the RING domain of MDM2-MDM4 (MMRi) that can inactivate the total oncogenic activity of MDM2-MDM4 heterodimers. Here, we describe the identification and characterization of MMRi62 as an MDM4-degrader and apoptosis inducer in leukemia cells. Biochemically, in our experiments, MMRi62 bound to preformed RING domain heterodimers altered the substrate preference toward MDM4 ubiquitination and promoted MDM2-dependent MDM4 degradation in cells. This MDM4-degrader activity of MMRi62 was found to be associated with potent apoptosis induction in leukemia cells. Interestingly, MMRi62 effectively induced apoptosis in p53 mutant, multidrug-resistant leukemia cells and patient samples in addition to p53 wild-type cells. In contrast, MMRi67 as a RING heterodimer disruptor and an enzymatic inhibitor of the MDM2-MDM4 E3 complex lacked MDM4-degrader activity and failed to induce apoptosis in these cells. In summary, this study identifies MMRi62 as a novel MDM2-MDM4-targeting agent and suggests that small molecules capable of promoting MDM4 degradation may be a viable new approach to killing leukemia cells bearing non-functional p53 by apoptosis.
Collapse
Affiliation(s)
- Rati Lama
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Chao Xu
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Samuel L. Galster
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY, United States
| | - Javier Querol-García
- Structural Biology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Scott Portwood
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Cory K. Mavis
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Federico M. Ruiz
- Structural Biology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Diana Martin
- Structural Biology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Jin Wu
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Marianna C. Giorgi
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Jill Bargonetti
- The Department of Biological Sciences, Hunter College, City University of New York, New York, NY, United States
| | - Eunice S. Wang
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | | | - Gerald B. Koudelka
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, NY, United States
| | - Sherry R. Chemler
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY, United States
| | - Inés G. Muñoz
- Structural Biology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Xinjiang Wang
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
- *Correspondence: Xinjiang Wang,
| |
Collapse
|
3
|
Sorf A, Sucha S, Morell A, Novotna E, Staud F, Zavrelova A, Visek B, Wsol V, Ceckova M. Targeting Pharmacokinetic Drug Resistance in Acute Myeloid Leukemia Cells with CDK4/6 Inhibitors. Cancers (Basel) 2020; 12:cancers12061596. [PMID: 32560251 PMCID: PMC7352292 DOI: 10.3390/cancers12061596] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/11/2020] [Accepted: 06/13/2020] [Indexed: 02/06/2023] Open
Abstract
Pharmacotherapy of acute myeloid leukemia (AML) remains challenging, and the disease has one of the lowest curability rates among hematological malignancies. The therapy outcomes are often compromised by the existence of a resistant AML phenotype associated with overexpression of ABCB1 and ABCG2 transporters. Because AML induction therapy frequently consists of anthracycline-like drugs, their efficiency may also be diminished by drug biotransformation via carbonyl reducing enzymes (CRE). In this study, we investigated the modulatory potential of the CDK4/6 inhibitors abemaciclib, palbociclib, and ribociclib on AML resistance using peripheral blood mononuclear cells (PBMC) isolated from patients with de novo diagnosed AML. We first confirmed inhibitory effect of the tested drugs on ABCB1 and ABCG2 in ABC transporter-expressing resistant HL-60 cells while also showing the ability to sensitize the cells to cytotoxic drugs even as no effect on AML-relevant CRE isoforms was observed. All tested CDK4/6 inhibitors elevated mitoxantrone accumulations in CD34+ PBMC and enhanced accumulation of mitoxantrone was found with abemaciclib and ribociclib in PBMC of FLT3-ITD- patients. Importantly, the accumulation rate in the presence of CDK4/6 inhibitors positively correlated with ABCB1 expression in CD34+ patients and led to enhanced apoptosis of PBMC in contrast to CD34− samples. In summary, combination therapy involving CDK4/6 inhibitors could favorably target multidrug resistance, especially when personalized based on CD34− and ABCB1-related markers.
Collapse
Affiliation(s)
- Ales Sorf
- Department of Pharmacology and Toxicology, Charles University, Faculty of Pharmacy, Akademika Heyrovskeho 1203, 50005 Hradec Kralove, Czech Republic; (A.S.); (S.S.); (F.S.)
| | - Simona Sucha
- Department of Pharmacology and Toxicology, Charles University, Faculty of Pharmacy, Akademika Heyrovskeho 1203, 50005 Hradec Kralove, Czech Republic; (A.S.); (S.S.); (F.S.)
| | - Anselm Morell
- Department of Biochemical Sciences, Charles University, Faculty of Pharmacy, Akademika Heyrovskeho 1203, 50005 Hradec Kralove, Czech Republic; (A.M.); (E.N.); (V.W.)
| | - Eva Novotna
- Department of Biochemical Sciences, Charles University, Faculty of Pharmacy, Akademika Heyrovskeho 1203, 50005 Hradec Kralove, Czech Republic; (A.M.); (E.N.); (V.W.)
| | - Frantisek Staud
- Department of Pharmacology and Toxicology, Charles University, Faculty of Pharmacy, Akademika Heyrovskeho 1203, 50005 Hradec Kralove, Czech Republic; (A.S.); (S.S.); (F.S.)
| | - Alzbeta Zavrelova
- 4th Department of Internal Medicine—Hematology, University Hospital Hradec Kralove, Charles University, Sokolska 581, 50005 Hradec Kralove, Czech Republic; (A.Z.); (B.V.)
| | - Benjamin Visek
- 4th Department of Internal Medicine—Hematology, University Hospital Hradec Kralove, Charles University, Sokolska 581, 50005 Hradec Kralove, Czech Republic; (A.Z.); (B.V.)
| | - Vladimir Wsol
- Department of Biochemical Sciences, Charles University, Faculty of Pharmacy, Akademika Heyrovskeho 1203, 50005 Hradec Kralove, Czech Republic; (A.M.); (E.N.); (V.W.)
| | - Martina Ceckova
- Department of Pharmacology and Toxicology, Charles University, Faculty of Pharmacy, Akademika Heyrovskeho 1203, 50005 Hradec Kralove, Czech Republic; (A.S.); (S.S.); (F.S.)
- Correspondence: ; Tel.: +420-495067218; Fax: +420-495-067-170
| |
Collapse
|
4
|
Miyazaki T, Ikegami T, Nagai Y, Nguyen A, Matsuzaki Y, Kobayashi K, Ceryak S. Bicarbonate Attenuates Irinotecan-Induced Cytotoxicity through Regulation of Both Extracellular and Intracellular <i>pHs</i> in Intestine Cell Line. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/jct.2013.45106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
5
|
Ackler S, Mitten MJ, Foster K, Oleksijew A, Refici M, Tahir SK, Xiao Y, Tse C, Frost DJ, Fesik SW, Rosenberg SH, Elmore SW, Shoemaker AR. The Bcl-2 inhibitor ABT-263 enhances the response of multiple chemotherapeutic regimens in hematologic tumors in vivo. Cancer Chemother Pharmacol 2010; 66:869-80. [PMID: 20099064 DOI: 10.1007/s00280-009-1232-1] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Accepted: 12/24/2009] [Indexed: 12/01/2022]
Abstract
PURPOSE This study was designed to test the ability of the Bcl-2 family inhibitor ABT-263 to potentiate commonly used chemotherapeutic agents and regimens in hematologic tumor models. METHODS Models of B-cell lymphoma and multiple myeloma were tested in vitro and in vivo with ABT-263 in combination with standard chemotherapeutic regimens, including VAP, CHOP and R-CHOP, as well as single cytotoxic agents including etoposide, rituximab, bortezomib and cyclophosphamide. Alterations in Bcl-2 family member expression patterns were analyzed to define mechanisms of potentiation. RESULTS ABT-263 was additive with etoposide, vincristine and VAP in vitro in the diffuse large B-cell lymphoma line (DLBCL) DoHH-2, while rituximab potentiated its activity in SuDHL-4. Bortezomib strongly synergized with ABT-263 in the mantle cell lymphoma line Granta 519. Treatment of DoHH-2 with etoposide was associated with an increase in Puma expression, while bortezomib upregulated Noxa expression in Granta 519. Combination of ABT-263 with cytotoxic agents demonstrated superior tumor growth inhibition and delay in multiple models versus cytotoxic therapy alone, along with significant improvements in tumor response rates. CONCLUSIONS Inhibition of the Bcl-2 family of proteins by ABT-263 enhances the cytotoxicity of multiple chemotherapeutics in hematologic tumors and represents a promising addition to the therapeutic arsenal for treatment of these diseases.
Collapse
Affiliation(s)
- Scott Ackler
- Global Pharmaceutical Research and Development, Abbott Laboratories, Abbott Park, IL, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Villeneuve DJ, Hembruff SL, Veitch Z, Cecchetto M, Dew WA, Parissenti AM. cDNA microarray analysis of isogenic paclitaxel- and doxorubicin-resistant breast tumor cell lines reveals distinct drug-specific genetic signatures of resistance. Breast Cancer Res Treat 2005; 96:17-39. [PMID: 16322897 DOI: 10.1007/s10549-005-9026-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2005] [Accepted: 07/06/2005] [Indexed: 12/13/2022]
Abstract
cDNA microarray analysis is a highly useful tool for the classification of tumors and for prediction of patient prognosis to specific cancers based on this classification. However, to date, there is little evidence that microarray approaches can be used to reliably predict patient response to specific chemotherapy drugs or regimens. This is likely due to an inability to differentiate between genes affecting patient prognosis and genes that play a role in response to specific drugs. Thus, it would be highly useful to identify genes whose expression correlates with tumor cell sensitivity to specific chemotherapy agents in a drug-specific manner. Using cDNA microarray analysis of wildtype MCF-7 breast tumor cells and isogenic paclitaxel-resistant (MCF-7(TAX)) or doxorubicin-resistant (MCF-7(DOX)) derivative cell lines, we have uncovered drug-specific changes in gene expression that accompany the establishment of paclitaxel or doxorubicin resistance. These changes in gene expression were confirmed by quantitative reverse transcription polymerase chain reaction and immunoblotting experiments, with a confirmation rate of approximately 91-95%. The genes identified may prove highly useful for prediction of response to paclitaxel or doxorubicin in patients with breast cancer. To our knowledge this is the first report of drug-specific genetic signatures of resistance to paclitaxel or doxorubicin, based on a comparison of gene expression between isogenic wildtype and drug-resistant tumor cell lines. Moreover, this study provides significant insight into the wide variety of mechanisms through which resistance to these agents may be acquired in breast cancer.
Collapse
Affiliation(s)
- David J Villeneuve
- Tumor Biology Research Program, Sudbury Regional Hospital, Sudbury, Ont., Canada
| | | | | | | | | | | |
Collapse
|
7
|
Golden JW, Linke J, Schmechel S, Thoemke K, Schiff LA. Addition of exogenous protease facilitates reovirus infection in many restrictive cells. J Virol 2002; 76:7430-43. [PMID: 12097555 PMCID: PMC136394 DOI: 10.1128/jvi.76.15.7430-7443.2002] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2001] [Accepted: 04/26/2002] [Indexed: 12/14/2022] Open
Abstract
Virion uncoating is a critical step in the life cycle of mammalian orthoreoviruses. In cell culture, and probably in extraintestinal tissues in vivo, reovirus virions undergo partial proteolysis within endosomal or/or lysosomal compartments. This process converts the virion into a form referred to as an intermediate subvirion particle (ISVP). In natural enteric reovirus infections, proteolytic uncoating takes place extracellularly within the intestinal lumen. The resultant proteolyzed particles, unlike intact virions, have the capacity to penetrate cell membranes and thereby gain access to cytoplasmic components required for viral gene expression. We hypothesized that the capacity of reovirus outer capsid proteins to be proteolyzed is a determinant of cellular host range. To investigate this hypothesis, we asked if the addition of protease to cell culture medium would expand the range of cultured mammalian cell lines that can be productively infected by reoviruses. We identified many transformed and nontransformed cell lines, as well as primary cells, that restrict viral infection. In several of these restrictive cells, virion uncoating is inefficient or blocked. Addition of proteases to the cell culture medium generates ISVP-like particles and promotes viral growth in nearly all cell lines tested. Interestingly, we found that some cell lines that restrict reovirus uncoating still express mature cathepsin L, a lysosomal protease required for virion disassembly in murine L929 cells. This finding suggests that factors in addition to cathepsin L are required for efficient intracellular proteolysis of reovirus virions. Our results demonstrate that virion uncoating is a critical determinant of reovirus cellular host range and that many cells which otherwise support productive reovirus infection cannot efficiently mediate this essential early step in the virus life cycle.
Collapse
Affiliation(s)
- Joseph W Golden
- Department of Microbiology, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | | | |
Collapse
|
8
|
Olshefski RS, Ladisch S. Glucosylceramide synthase inhibition enhances vincristine-induced cytotoxicity. Int J Cancer 2001; 93:131-8. [PMID: 11391632 DOI: 10.1002/ijc.1301] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
As a strategy to enhance tumor cell sensitivity to vincristine, we tested whether modulation of sphingolipid metabolism would alter vincristine cytotoxicity since this is linked to accumulation of the intermediate metabolite, ceramide. We blocked ceramide metabolism in a series of variably vincristine-resistant cell lines derived from CCRF-CEM leukemia cells using an inhibitor of glucosylceramide synthase, DL-threo-phenyl-2-hexadecanoylamino-3-pyrrolidino-1-propanol (PPPP). PPPP alone (1.0 microM), while nearly completely blocking glucosylceramide synthesis, was not toxic and did not increase cellular ceramide levels. Vincristine alone was toxic, caused apoptosis or programmed cell death (PCD) and caused an elevation in ceramide levels. Strikingly, the combination of PPPP and vincristine resulted in a further increase, over that of vincristine alone, of (i) cellular ceramide concentration, (ii) cytotoxicity associated with PCD and (iii) G2/M cell-cycle arrest. PPPP had no effect on P-glycoprotein expression or function. We conclude that vincristine cytotoxicity occurs in part through a ceramide-dependent mechanism, resulting in both G2/M block as well as PCD, and that the blockade of glucosylceramide synthase, in itself not toxic, causes augmented accumulation of ceramide resulting from vincristine exposure, which in turn maximizes ceramide-dependent, vincristine-induced cytotoxicity. Inhibition of glucosylceramide synthesis may be a means of circumventing drug resistance by enhancing signaling through a cell-death pathway.
Collapse
Affiliation(s)
- R S Olshefski
- Glycobiology Program, Center for Cancer and Transplantation Biology, Children's Research Institute, Children's National Medical Center, Washington, DC, USA
| | | |
Collapse
|
9
|
Armstrong JS, Steinauer KK, French J, Killoran PL, Walleczek J, Kochanski J, Knox SJ. Bcl-2 inhibits apoptosis induced by mitochondrial uncoupling but does not prevent mitochondrial transmembrane depolarization. Exp Cell Res 2001; 262:170-9. [PMID: 11139341 DOI: 10.1006/excr.2000.5091] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Bcl-2 overexpression protects cells from apoptosis induced by many cytotoxic agents. In this study, we investigated the effects of uncoupling mitochondrial electron transport in both HL60 wild-type and Bcl-2-overexpressing cells using the protonophore carbonyl cyanide m-chlorophenylhydrazone. We found that uncoupling mitochondrial electron transport induced apoptosis in wild-type, but not in Bcl-2-overexpressing cells. To investigate the mechanism of action of Bcl-2-mediated inhibition of cyanide m-chlorophenylhydrazone-induced apoptosis, we measured the mitochondrial transmembrane potential (DeltaPsi(m)) after uncoupling mitochondrial electron transport and found that both HL-60 wild-type and Bcl-2-overexpressing cells similarly depolarize following cyanide m-chlorophenylhydrazone exposure. Western blot analysis demonstrated that Bcl-2 overexpression did not completely block cytochrome c release from mitochondria after uncoupling mitochondrial electron transport. Since Bcl-2 may act as an antioxidant, we studied the effect of altering the cellular redox state prior to uncoupling mitochondrial electron transport in Bcl-2-overexpressing cells. Depletion of mitochondrial (but not cytosolic) glutathione induced apoptosis in Bcl-2-overexpressing cells and negated the protective effect of Bcl-2. Furthermore, following glutathione depletion, Bcl-2-overexpressing cells were sensitized to undergo cyanide m-chlorophenylhydrazone-induced apoptosis. These data suggest that the action of Bcl-2 is dependent, in part, on the cellular and mitochondrial redox state.
Collapse
Affiliation(s)
- J S Armstrong
- Department of Radiation Oncology, Stanford University Medical Center, Stanford, California, 94305-5105, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Hirpara JL, Clément MV, Pervaiz S. Intracellular acidification triggered by mitochondrial-derived hydrogen peroxide is an effector mechanism for drug-induced apoptosis in tumor cells. J Biol Chem 2001; 276:514-21. [PMID: 11016925 DOI: 10.1074/jbc.m004687200] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
We recently showed that two photoproducts of merocyanine 540, C2 and C5, triggered cytochrome C release; however, C5 was inefficient in inducing caspase activity and apoptosis in leukemia cells, unlike C2. Here we show that HL60 cells acidified upon exposure to C2 but not C5. The intracellular drop in pH and caspase activation were dependent upon hydrogen peroxide production, and were inhibited by scavengers of hydrogen peroxide. On the contrary, caspase inhibitors did not block hydrogen peroxide production. In turn, increased intracellular hydrogen peroxide concentration was downstream of superoxide anion produced within 2 h of exposure to C2. Inhibitor of NADPH oxidase diphenyleneiodonium neither inhibited superoxide production nor caspase activation triggered by C2. However, exposure of purified mitochondria to C2 resulted in significantly increased superoxide production. Furthermore, cytochrome C release from isolated mitochondria induced by C2 was completely inhibited in the presence of scavengers of hydrogen peroxide. Contrarily, scavenging hydrogen peroxide had no effect on the cyclosporin A-sensitive mitochondrial permeability transition induced by C5. Our data suggest a scenario where drug-induced hydrogen peroxide production induces intracellular acidification and release of cytochrome C, independent of the inner membrane pore, thereby creating an intracellular environment permissive for caspase activation.
Collapse
Affiliation(s)
- J L Hirpara
- Department of Physiology, National University of Singapore, Singapore 119260
| | | | | |
Collapse
|
11
|
Abstract
Myeloid differentiation is a highly regulated process governed by various cytokines, such as EPO, TPO, G-CSF, IL-3, IL-5 and GM-CSF. These cytokines act in part through activation of the STAT transcription factor family. In particular, various isoforms of STAT3 and STAT5 are activated during myeloid differentiation in a cell-type and maturation-state dependent fashion. In vitro studies have shown that STAT proteins are essential for cytokine-regulated processes such as cellular proliferation, differentiation as well as survival. Similarly, various STAT knock-outs have highlighted the role of STATs in myeloid differentiation in vivo. STATs also appear to play an important role in various myeloid malignancies, which are characterized by arrested maturation and cytokine-independent proliferation of myeloid progenitors. Constitutive activation of STAT3 and/or STAT5 resulting in enhanced transcription of anti-apoptotic- cell-cycle progression genes is likely to contribute to the pathogenesis of various myeloid leukemia's. Oncogene (2000).
Collapse
Affiliation(s)
- P J Coffer
- Department of Pulmonary Diseases, Room G03 550, University Medical Center Utrecht, Heidelberglaan 100, 3584CX Utrecht, The Netherlands
| | | | | |
Collapse
|
12
|
de Groot RP, Raaijmakers JA, Lammers JW, Koenderman L. STAT5-Dependent CyclinD1 and Bcl-xL expression in Bcr-Abl-transformed cells. MOLECULAR CELL BIOLOGY RESEARCH COMMUNICATIONS : MCBRC 2000; 3:299-305. [PMID: 10964754 DOI: 10.1006/mcbr.2000.0231] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Signal transducers and activators of transcription (STATs) are a family of transcription factors that were originally identified as mediators of cytokine-induced gene expression. We and others have recently shown that STAT5 also plays a major role in cellular transformation by the Bcr-Abl oncogene. Here we show that the antiapoptotic bcl-xL gene product and the cell cycle regulator cyclin D1 are targets of STAT5 in Bcr-Abl-transformed cells. In the CML cell line K562 and in BaF3 cells ectopically expressing Bcr-Abl, both the cyclin D1 and bcl-x promoters are highly active. The activity of these promoters can be strongly repressed by cotransfection of a dominant negative (DN) mutant of STAT5. Moreover, the cyclin D1 and bcl-x promoters contain STAT binding sites to which STAT5 constitutively binds in Bcr-Abl transformed cells. These results suggest that STAT5 contributes to transformation by Bcr-Abl by induction of cyclin D1 and bcl-xL expression.
Collapse
Affiliation(s)
- R P de Groot
- Department of Pulmonary Diseases, University Medical Center Utrecht, Utrecht, The Netherlands.
| | | | | | | |
Collapse
|