1
|
Devaux CA, Fantini J. Unravelling Antigenic Cross-Reactions toward the World of Coronaviruses: Extent of the Stability of Shared Epitopes and SARS-CoV-2 Anti-Spike Cross-Neutralizing Antibodies. Pathogens 2023; 12:713. [PMID: 37242383 PMCID: PMC10220573 DOI: 10.3390/pathogens12050713] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
The human immune repertoire retains the molecular memory of a very great diversity of target antigens (epitopes) and can recall this upon a second encounter with epitopes against which it has previously been primed. Although genetically diverse, proteins of coronaviruses exhibit sufficient conservation to lead to antigenic cross-reactions. In this review, our goal is to question whether pre-existing immunity against seasonal human coronaviruses (HCoVs) or exposure to animal CoVs has influenced the susceptibility of human populations to SARS-CoV-2 and/or had an impact upon the physiopathological outcome of COVID-19. With the hindsight that we now have regarding COVID-19, we conclude that although antigenic cross-reactions between different coronaviruses exist, cross-reactive antibody levels (titers) do not necessarily reflect on memory B cell frequencies and are not always directed against epitopes which confer cross-protection against SARS-CoV-2. Moreover, the immunological memory of these infections is short-term and occurs in only a small percentage of the population. Thus, in contrast to what might be observed in terms of cross-protection at the level of a single individual recently exposed to circulating coronaviruses, a pre-existing immunity against HCoVs or other CoVs can only have a very minor impact on SARS-CoV-2 circulation at the level of human populations.
Collapse
Affiliation(s)
- Christian A. Devaux
- Laboratory Microbes Evolution Phylogeny and Infection (MEPHI), Aix-Marseille Université, IRD, APHM Institut Hospitalo-Universitaire—Méditerranée Infection, 13005 Marseille, France
- Centre National de la Recherche Scientifique (CNRS-SNC5039), 13009 Marseille, France
| | - Jacques Fantini
- Aix-Marseille Université, INSERM UMR_S 1072, 13015 Marseille, France
| |
Collapse
|
2
|
Lau SKP, Woo PCY, Yip CCY, Fan RYY, Huang Y, Wang M, Guo R, Lam CSF, Tsang AKL, Lai KKY, Chan KH, Che XY, Zheng BJ, Yuen KY. Isolation and characterization of a novel Betacoronavirus subgroup A coronavirus, rabbit coronavirus HKU14, from domestic rabbits. J Virol 2012; 86:5481-96. [PMID: 22398294 PMCID: PMC3347282 DOI: 10.1128/jvi.06927-11] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 02/23/2012] [Indexed: 01/30/2023] Open
Abstract
We describe the isolation and characterization of a novel Betacoronavirus subgroup A coronavirus, rabbit coronavirus HKU14 (RbCoV HKU14), from domestic rabbits. The virus was detected in 11 (8.1%) of 136 rabbit fecal samples by reverse transcriptase PCR (RT-PCR), with a viral load of up to 10(8) copies/ml. RbCoV HKU14 was able to replicate in HRT-18G and RK13 cells with cytopathic effects. Northern blotting confirmed the production of subgenomic mRNAs coding for the HE, S, NS5a, E, M, and N proteins. Subgenomic mRNA analysis revealed a transcription regulatory sequence, 5'-UCUAAAC-3'. Phylogenetic analysis showed that RbCoV HKU14 formed a distinct branch among Betacoronavirus subgroup A coronaviruses, being most closely related to but separate from the species Betacoronavirus 1. A comparison of the conserved replicase domains showed that RbCoV HKU14 possessed <90% amino acid identities to most members of Betacoronavirus 1 in ADP-ribose 1″-phosphatase (ADRP) and nidoviral uridylate-specific endoribonuclease (NendoU), indicating that RbCoV HKU14 should represent a separate species. RbCoV HKU14 also possessed genomic features distinct from those of other Betacoronavirus subgroup A coronaviruses, including a unique NS2a region with a variable number of small open reading frames (ORFs). Recombination analysis revealed possible recombination events during the evolution of RbCoV HKU14 and members of Betacoronavirus 1, which may have occurred during cross-species transmission. Molecular clock analysis using RNA-dependent RNA polymerase (RdRp) genes dated the most recent common ancestor of RbCoV HKU14 to around 2002, suggesting that this virus has emerged relatively recently. Antibody against RbCoV was detected in 20 (67%) of 30 rabbit sera tested by an N-protein-based Western blot assay, whereas neutralizing antibody was detected in 1 of these 20 rabbits.
Collapse
Affiliation(s)
- Susanna K. P. Lau
- State Key Laboratory of Emerging Infectious Diseases
- Research Centre of Infection and Immunology
- Carol Yu Centre for Infection
- Department of Microbiology, The University of Hong Kong, Hong Kong
| | - Patrick C. Y. Woo
- State Key Laboratory of Emerging Infectious Diseases
- Research Centre of Infection and Immunology
- Carol Yu Centre for Infection
- Department of Microbiology, The University of Hong Kong, Hong Kong
| | - Cyril C. Y. Yip
- Department of Microbiology, The University of Hong Kong, Hong Kong
| | - Rachel Y. Y. Fan
- Department of Microbiology, The University of Hong Kong, Hong Kong
| | - Yi Huang
- Department of Microbiology, The University of Hong Kong, Hong Kong
| | - Ming Wang
- Guangzhou Center for Disease Control and Prevention
| | - Rongtong Guo
- Guangzhou Center for Disease Control and Prevention
| | - Carol S. F. Lam
- Department of Microbiology, The University of Hong Kong, Hong Kong
| | - Alan K. L. Tsang
- Department of Microbiology, The University of Hong Kong, Hong Kong
| | | | - Kwok-Hung Chan
- Department of Microbiology, The University of Hong Kong, Hong Kong
| | - Xiao-Yan Che
- Center of Laboratory, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Bo-Jian Zheng
- State Key Laboratory of Emerging Infectious Diseases
- Research Centre of Infection and Immunology
- Carol Yu Centre for Infection
- Department of Microbiology, The University of Hong Kong, Hong Kong
| | - Kwok-Yung Yuen
- State Key Laboratory of Emerging Infectious Diseases
- Research Centre of Infection and Immunology
- Carol Yu Centre for Infection
- Department of Microbiology, The University of Hong Kong, Hong Kong
| |
Collapse
|
3
|
Woo PCY, Huang Y, Lau SKP, Yuen KY. Coronavirus genomics and bioinformatics analysis. Viruses 2010; 2:1804-1820. [PMID: 21994708 PMCID: PMC3185738 DOI: 10.3390/v2081803] [Citation(s) in RCA: 505] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Accepted: 08/12/2010] [Indexed: 02/06/2023] Open
Abstract
The drastic increase in the number of coronaviruses discovered and coronavirus genomes being sequenced have given us an unprecedented opportunity to perform genomics and bioinformatics analysis on this family of viruses. Coronaviruses possess the largest genomes (26.4 to 31.7 kb) among all known RNA viruses, with G + C contents varying from 32% to 43%. Variable numbers of small ORFs are present between the various conserved genes (ORF1ab, spike, envelope, membrane and nucleocapsid) and downstream to nucleocapsid gene in different coronavirus lineages. Phylogenetically, three genera, Alphacoronavirus, Betacoronavirus and Gammacoronavirus, with Betacoronavirus consisting of subgroups A, B, C and D, exist. A fourth genus, Deltacoronavirus, which includes bulbul coronavirus HKU11, thrush coronavirus HKU12 and munia coronavirus HKU13, is emerging. Molecular clock analysis using various gene loci revealed that the time of most recent common ancestor of human/civet SARS related coronavirus to be 1999-2002, with estimated substitution rate of 4×10(-4) to 2×10(-2) substitutions per site per year. Recombination in coronaviruses was most notable between different strains of murine hepatitis virus (MHV), between different strains of infectious bronchitis virus, between MHV and bovine coronavirus, between feline coronavirus (FCoV) type I and canine coronavirus generating FCoV type II, and between the three genotypes of human coronavirus HKU1 (HCoV-HKU1). Codon usage bias in coronaviruses were observed, with HCoV-HKU1 showing the most extreme bias, and cytosine deamination and selection of CpG suppressed clones are the two major independent biological forces that shape such codon usage bias in coronaviruses.
Collapse
Affiliation(s)
- Patrick C. Y. Woo
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong; China; E-Mail:
- Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong; China
- Carol Yu Centre of Infection, The University of Hong Kong, Hong Kong; China
- Department of Microbiology, The University of Hong Kong, University Pathology Building, Queen Mary Hospital, Hong Kong; China; E-Mail:
| | - Yi Huang
- Department of Microbiology, The University of Hong Kong, University Pathology Building, Queen Mary Hospital, Hong Kong; China; E-Mail:
| | - Susanna K. P. Lau
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong; China; E-Mail:
- Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong; China
- Carol Yu Centre of Infection, The University of Hong Kong, Hong Kong; China
- Department of Microbiology, The University of Hong Kong, University Pathology Building, Queen Mary Hospital, Hong Kong; China; E-Mail:
| | - Kwok-Yung Yuen
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong; China; E-Mail:
- Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong; China
- Carol Yu Centre of Infection, The University of Hong Kong, Hong Kong; China
- Department of Microbiology, The University of Hong Kong, University Pathology Building, Queen Mary Hospital, Hong Kong; China; E-Mail:
| |
Collapse
|
4
|
Ecoepidemiology and complete genome comparison of different strains of severe acute respiratory syndrome-related Rhinolophus bat coronavirus in China reveal bats as a reservoir for acute, self-limiting infection that allows recombination events. J Virol 2010; 84:2808-19. [PMID: 20071579 DOI: 10.1128/jvi.02219-09] [Citation(s) in RCA: 209] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Despite the identification of severe acute respiratory syndrome-related coronavirus (SARSr-CoV) in Rhinolophus Chinese horseshoe bats (SARSr-Rh-BatCoV) in China, the evolutionary and possible recombination origin of SARSr-CoV remains undetermined. We carried out the first study to investigate the migration pattern and SARSr-Rh-BatCoV genome epidemiology in Chinese horseshoe bats during a 4-year period. Of 1,401 Chinese horseshoe bats from Hong Kong and Guangdong, China, that were sampled, SARSr-Rh-BatCoV was detected in alimentary specimens from 130 (9.3%) bats, with peak activity during spring. A tagging exercise of 511 bats showed migration distances from 1.86 to 17 km. Bats carrying SARSr-Rh-BatCoV appeared healthy, with viral clearance occurring between 2 weeks and 4 months. However, lower body weights were observed in bats positive for SARSr-Rh-BatCoV, but not Rh-BatCoV HKU2. Complete genome sequencing of 10 SARSr-Rh-BatCoV strains showed frequent recombination between different strains. Moreover, recombination was detected between SARSr-Rh-BatCoV Rp3 from Guangxi, China, and Rf1 from Hubei, China, in the possible generation of civet SARSr-CoV SZ3, with a breakpoint at the nsp16/spike region. Molecular clock analysis showed that SARSr-CoVs were newly emerged viruses with the time of the most recent common ancestor (tMRCA) at 1972, which diverged between civet and bat strains in 1995. The present data suggest that SARSr-Rh-BatCoV causes acute, self-limiting infection in horseshoe bats, which serve as a reservoir for recombination between strains from different geographical locations within reachable foraging range. Civet SARSr-CoV is likely a recombinant virus arising from SARSr-CoV strains closely related to SARSr-Rh-BatCoV Rp3 and Rf1. Such frequent recombination, coupled with rapid evolution especially in ORF7b/ORF8 region, in these animals may have accounted for the cross-species transmission and emergence of SARS.
Collapse
|
5
|
Lau SKP, Woo PCY, Li KSM, Huang Y, Wang M, Lam CSF, Xu H, Guo R, Chan KH, Zheng BJ, Yuen KY. Complete genome sequence of bat coronavirus HKU2 from Chinese horseshoe bats revealed a much smaller spike gene with a different evolutionary lineage from the rest of the genome. Virology 2007; 367:428-39. [PMID: 17617433 PMCID: PMC7103351 DOI: 10.1016/j.virol.2007.06.009] [Citation(s) in RCA: 139] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2007] [Revised: 05/16/2007] [Accepted: 06/06/2007] [Indexed: 12/15/2022]
Abstract
Apart from bat-SARS-CoV, we have identified a novel group 1 coronavirus, bat-CoV HKU2, in Rhinolophus sinicus (Chinese horseshoe bats). Since it has been suggested that the receptor-binding motif (RBM) of SARS-CoV may have been acquired from a group 1 coronavirus, we conducted a surveillance study and identified bat-SARS-CoV and bat-CoV HKU2 in 8.7% and 7.5% respectively of R. sinicus in Hong Kong and Guangdong. Complete genome sequencing of four strains of bat-CoV HKU2 revealed the smallest coronavirus genome (27164 nucleotides) and a unique spike protein evolutionarily distinct from the rest of the genome. This spike protein, sharing similar deletions with other group 2 coronaviruses in its C-terminus, also contained a 15-amino acid peptide homologous to a corresponding peptide within the RBM of spike protein of SARS-CoV, which was absent in other coronaviruses except bat-SARS-CoV. These suggest a common evolutionary origin in the spike protein of bat-CoV HKU2, bat-SARS-CoV, and SARS-CoV.
Collapse
Affiliation(s)
- Susanna K P Lau
- State Key Laboratory of Emerging Infectious Diseases, Hong Kong
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Das Sarma J, Fu L, Hingley ST, Lavi E. Mouse hepatitis virus type-2 infection in mice: an experimental model system of acute meningitis and hepatitis. Exp Mol Pathol 2001; 71:1-12. [PMID: 11502093 DOI: 10.1006/exmp.2001.2378] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Infection with mouse hepatitis virus (MHV) strain A59 produces acute hepatitis, encephalitis, and chronic demyelination in mice. However, little is known about a closely related strain, MHV-2, which is only weakly neurotropic. To better understand the molecular basis of neurotropism of MHVs, we compared the pathogenesis and genomic sequence of MHV-2 with that of MHV-A59. Intracerebral injection of MHV-2 into 4-week-old C57B1/6 mice produces acute meningitis and hepatitis without encephalitis or chronic inflammatory demyelination. Sequence comparison between MHV-2 and MHV-A59 reveals 94-98% sequence identity of the replicase gene, 83-95% sequence identity of genes 2a, 3, 5b, 6, and 7, and marked difference in the sequence of genes, 2b, 4, and 5a. This information provides the basis for further studies exploring the mechanism of viral neurotropism and virus-induced demyelination.
Collapse
Affiliation(s)
- J Das Sarma
- Division of Neuropathology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | |
Collapse
|
7
|
Das Sarma J, Fu L, Hingley ST, Lai MMC, Lavi E. Sequence analysis of the S gene of recombinant MHV-2/A59 coronaviruses reveals three candidate mutations associated with demyelination and hepatitis. J Neurovirol 2001; 7:432-6. [PMID: 11582515 PMCID: PMC7095204 DOI: 10.1080/135502801753170282] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Coronaviruses, mouse hepatitis virus (MHV) strains, exhibit various degrees of neurotropism and hepatotropism following intracerebral (IC) infection of 4-week-old C57Bl/6 mice. Whereas MHV-A59 produces acute meningitis, encephalitis, hepatitis, and chronic demyelination, a closely related strain, MHV-2, produces only acute meningitis and hepatitis. We previously reported that the spike glycoprotein gene of MHV contains determinants of demyelination and hepatitis. To further investigate the site of demyelination and hepatitis determinants within the S gene, we sequenced the S gene of several nondemyelinating recombinant viruses. We found that three encephalitis-positive, demyelination-negative, hepatitis-negative recombinant viruses have an MHV-A59-derived S gene, which contains three identical point mutations (I375M, L652I, and T1087N). One or more of the sites of these mutations in the MHV-A59 genome are likely to contribute to demyelination and hepatitis.
Collapse
MESH Headings
- Amino Acid Substitution
- Animals
- Brain/pathology
- Brain/virology
- Cardiovirus Infections/pathology
- Cardiovirus Infections/virology
- Demyelinating Diseases/pathology
- Demyelinating Diseases/virology
- Encephalitis, Viral/pathology
- Encephalitis, Viral/virology
- Genes, Viral
- Hepatitis, Viral, Animal/pathology
- Hepatitis, Viral, Animal/virology
- Liver/pathology
- Liver/virology
- Male
- Membrane Glycoproteins/chemistry
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/physiology
- Meningitis, Viral/pathology
- Meningitis, Viral/virology
- Mice
- Mice, Inbred C57BL
- Murine hepatitis virus/classification
- Murine hepatitis virus/genetics
- Murine hepatitis virus/pathogenicity
- Murine hepatitis virus/physiology
- Point Mutation
- Recombination, Genetic
- Sequence Analysis, RNA
- Species Specificity
- Spike Glycoprotein, Coronavirus
- Spinal Cord/pathology
- Spinal Cord/virology
- Viral Envelope Proteins/chemistry
- Viral Envelope Proteins/genetics
- Viral Envelope Proteins/physiology
- Viral Structural Proteins/genetics
- Virulence/genetics
Collapse
Affiliation(s)
- Jayasri Das Sarma
- Department of Pathology and Laboratory Medicine, 613 Stellar-Chance Laboratories, University of Pennsylvania, School of Medicine, Division of Neuropathology, 422 Curie Blvd, 19104-6100 Philadelphia, PA USA
| | - Li Fu
- Department of Pathology and Laboratory Medicine, 613 Stellar-Chance Laboratories, University of Pennsylvania, School of Medicine, Division of Neuropathology, 422 Curie Blvd, 19104-6100 Philadelphia, PA USA
| | - Susan T. Hingley
- Department of Microbiology and Immunology, Philadelphia College of Osteopathic Medicine, Philadelphia, Pennsylvania
| | - Michael M. C. Lai
- Department of Molecular Microbiology and Immunology, Howard Hughes Medical Institute, University of Southern California, School of Medicine, Los Angeles, California USA
| | - Ehud Lavi
- Department of Pathology and Laboratory Medicine, 613 Stellar-Chance Laboratories, University of Pennsylvania, School of Medicine, Division of Neuropathology, 422 Curie Blvd, 19104-6100 Philadelphia, PA USA
| |
Collapse
|
8
|
Das Sarma J, Fu L, Tsai JC, Weiss SR, Lavi E. Demyelination determinants map to the spike glycoprotein gene of coronavirus mouse hepatitis virus. J Virol 2000; 74:9206-13. [PMID: 10982367 PMCID: PMC102119 DOI: 10.1128/jvi.74.19.9206-9213.2000] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Demyelination is the pathologic hallmark of the human immune-mediated neurologic disease multiple sclerosis, which may be triggered or exacerbated by viral infections. Several experimental animal models have been developed to study the mechanism of virus-induced demyelination, including coronavirus mouse hepatitis virus (MHV) infection in mice. The envelope spike (S) glycoprotein of MHV contains determinants of properties essential for virus-host interactions. However, the molecular determinants of MHV-induced demyelination are still unknown. To investigate the mechanism of MHV-induced demyelination, we examined whether the S gene of MHV contains determinants of demyelination and whether demyelination is linked to viral persistence. Using targeted RNA recombination, we replaced the S gene of a demyelinating virus (MHV-A59) with the S gene of a closely related, nondemyelinating virus (MHV-2). Recombinant viruses containing an S gene derived from MHV-2 in an MHV-A59 background (Penn98-1 and Penn98-2) exhibited a persistence-positive, demyelination-negative phenotype. Thus, determinants of demyelination map to the S gene of MHV. Furthermore, viral persistence is insufficient to induce demyelination, although it may be a prerequisite for the development of demyelination.
Collapse
Affiliation(s)
- J Das Sarma
- Division of Neuropathology, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia 19104, USA
| | | | | | | | | |
Collapse
|
9
|
Abstract
The capped and polyadenylated genomes of coronaviruses, spanning some 27 to 31 kb, are the largest of all RNA virus genomes, including those of the segmented RNA viruses. This chapter presents the reverse genetics of the largest RNA viruses. Just as all other positive-sense RNA viruses (retroviruses excluded), coronavirus genomic RNA is infectious when transfected into the cells of a permissive host. Therefore, in principle, the most direct way to perform reverse genetics on a coronavirus ought to involve the construction of a full-length genomic complementary DNA (cDNA) clone from which infectious RNA could be transcribed in vitro . The method––targeted recombination––is less direct and more laborious, and so far it has been applied exclusively to site-directed mutagenesis of mouse hepatitis virus (MHV). Thus, at least for structural gene mutations that are not expected to be severely deleterious, targeted recombination may remain the less complicated alternative for the creation of MHV mutants. The chapter discusses targeted RNA recombination, such as development of system, genetic analysis of coronavirus structural proteins, genetic analysis of coronavirus RNA synthesis, and limitations of targeted recombination.
Collapse
Affiliation(s)
- P S Masters
- Wadsworth Center for Laboratories and Research, New York State Department of Health, State University of New York at Albany, New York 12201, USA
| |
Collapse
|