1
|
Baek S, Park CI, Hwang YG, Jeon H, Kim SE, Song A, Park HJ, Park I, Kang J, Cha JY. Enzyme-derived deer velvet extract activate the immune response in cyclophosphamide-induced immunosuppressive mice. Food Sci Biotechnol 2023; 32:1435-1444. [PMID: 37457410 PMCID: PMC10349012 DOI: 10.1007/s10068-023-01275-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/05/2023] [Accepted: 01/30/2023] [Indexed: 02/25/2023] Open
Abstract
Deer velvet (DV) is an oriental traditional medicine used to treat various diseases. The present study examined the effect of flavourzyme-derived DV extract (YC-1101) on macrophages and an immunosuppressed mouse model. YC-1101 induced activation of macrophages as measured by nitric oxide production, cell proliferation, and cytokine release via concentration-dependent phosphorylation of c-Jun N-terminal kinase, extracellular signal-regulated kinase, and AKT, and nuclear translocation of p65 in macrophages. In addition, oral YC-1101 administration significantly increased splenocyte proliferation and natural killer cell activity in the immunosuppressed mouse model. Moreover, the levels of immune-related cytokines such as tumor necrotic factor-α, interferon-γ, and interleukin-2 were significantly increased by YC-1101 treatment comparable to the control group. Thus, these results suggest that YC-1101 is an efficient natural ingredient that has an immune-enhancing effect, and it might be a potential functional food for improving immunity.
Collapse
Affiliation(s)
- Sinhwa Baek
- Yuhan Care Co., Ltd, Yuhan Care R&D Center, Yongin, 17084 Republic of Korea
- Yuhan Care Co., Ltd, Yuhan Natural Product R&D Center, Andong, 36618 Republic of Korea
| | - Cho I Park
- Yuhan Care Co., Ltd, Yuhan Care R&D Center, Yongin, 17084 Republic of Korea
- Yuhan Care Co., Ltd, Yuhan Natural Product R&D Center, Andong, 36618 Republic of Korea
| | - Yun Gyeong Hwang
- Yuhan Care Co., Ltd, Yuhan Care R&D Center, Yongin, 17084 Republic of Korea
- Yuhan Care Co., Ltd, Yuhan Natural Product R&D Center, Andong, 36618 Republic of Korea
| | - Hyejin Jeon
- Yuhan Care Co., Ltd, Yuhan Care R&D Center, Yongin, 17084 Republic of Korea
- Yuhan Care Co., Ltd, Yuhan Natural Product R&D Center, Andong, 36618 Republic of Korea
| | - Seong-Eun Kim
- Yuhan Care Co., Ltd, Yuhan Care R&D Center, Yongin, 17084 Republic of Korea
- Yuhan Care Co., Ltd, Yuhan Natural Product R&D Center, Andong, 36618 Republic of Korea
| | - Aeri Song
- Yuhan Care Co., Ltd, Yuhan Care R&D Center, Yongin, 17084 Republic of Korea
- Yuhan Care Co., Ltd, Yuhan Natural Product R&D Center, Andong, 36618 Republic of Korea
| | - Hyun-Je Park
- Yuhan Care Co., Ltd, Yuhan Care R&D Center, Yongin, 17084 Republic of Korea
- Yuhan Care Co., Ltd, Yuhan Natural Product R&D Center, Andong, 36618 Republic of Korea
| | - Ilbum Park
- Yuhan Care Co., Ltd, Yuhan Care R&D Center, Yongin, 17084 Republic of Korea
| | - Jongsoo Kang
- Yuhan Care Co., Ltd, Seoul, 07335 Republic of Korea
| | - Joo Young Cha
- Yuhan Care Co., Ltd, Yuhan Care R&D Center, Yongin, 17084 Republic of Korea
- Yuhan Care Co., Ltd, Yuhan Natural Product R&D Center, Andong, 36618 Republic of Korea
| |
Collapse
|
2
|
Huang Z, Yang P, Wang F. Shrimp Plasma CREG Is a Hemocyte Activation Factor. Front Immunol 2021; 12:707770. [PMID: 34484206 PMCID: PMC8415475 DOI: 10.3389/fimmu.2021.707770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 07/27/2021] [Indexed: 11/13/2022] Open
Abstract
Cytokines are a class of immunoregulatory proteins that are secreted by cells. Although vertebrate cytokine, especially mammalian cytokine has been well studied for the past decades. Much less attention has been paid to invertebrate so that only some cytokines have been identified in invertebrates. We have chosen Peaneus vannamei as a model to explore novel invertebrate cytokines. To achieve this, we previously purified shrimp plasma low abundance proteins and identified more than 400 proteins with proteomics analyses. In this study, a cellular repressor of E1A-stimulated gene (CREG)-like protein, which is highly conserved from Drosophila melanogaster to Homo sapiens, was further characterized in shrimp plasma. We found that shrimp plasma CREG was a glycoprotein which was strongly induced in hemolymph at 8 h post-LPS injection. Further function experiment unveiled that recombinant shrimp CREG protein injection significantly increased phagocytic hemocyte and lysosome-high hemocyte proportion in hemolymph. After that, hemocytes from rEGFP- and rCREG-protein injected shrimps were subjected to transcriptome analyses, which revealed that shrimp CREG protein could comprehensively promote hemocyte maturation and activation. Taken together, our data clearly indicated that shrimp plasma CREG protein is a novel hemocyte activation factor, which is probably a conserved myeloid cell lineage activation factor from invertebrate to vertebrate.
Collapse
Affiliation(s)
- Zhiqi Huang
- Department of Biology, College of Science, Shantou University, Shantou, China
| | - Peng Yang
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, China
| | - Fan Wang
- Department of Biology, College of Science, Shantou University, Shantou, China.,Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, China.,STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, China
| |
Collapse
|
3
|
Chen Q, Coto-Llerena M, Suslov A, Teixeira RD, Fofana I, Nuciforo S, Hofmann M, Thimme R, Hensel N, Lohmann V, Ng CKY, Rosenberger G, Wieland S, Heim MH. Interferon lambda 4 impairs hepatitis C viral antigen presentation and attenuates T cell responses. Nat Commun 2021; 12:4882. [PMID: 34385466 PMCID: PMC8360984 DOI: 10.1038/s41467-021-25218-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 07/26/2021] [Indexed: 12/15/2022] Open
Abstract
Genetic variants of the interferon lambda (IFNL) gene locus are strongly associated with spontaneous and IFN treatment-induced clearance of hepatitis C virus (HCV) infections. Individuals with the ancestral IFNL4-dG allele are not able to clear HCV in the acute phase and have more than a 90% probability to develop chronic hepatitis C (CHC). Paradoxically, the IFNL4-dG allele encodes a fully functional IFNλ4 protein with antiviral activity against HCV. Here we describe an effect of IFNλ4 on HCV antigen presentation. Only minor amounts of IFNλ4 are secreted, because the protein is largely retained in the endoplasmic reticulum (ER) where it induces ER stress. Stressed cells are significantly weaker activators of HCV specific CD8+ T cells than unstressed cells. This is not due to reduced MHC I surface presentation or extracellular IFNλ4 effects, since T cell responses are restored by exogenous loading of MHC with HCV antigens. Rather, IFNλ4 induced ER stress impairs HCV antigen processing and/or loading onto the MHC I complex. Our results provide a potential explanation for the IFNλ4-HCV paradox.
Collapse
Affiliation(s)
- Qian Chen
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | | | - Aleksei Suslov
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | | | - Isabel Fofana
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Sandro Nuciforo
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Maike Hofmann
- Department of Medicine II, University Hospital Freiburg, Freiburg, Germany
| | - Robert Thimme
- Department of Medicine II, University Hospital Freiburg, Freiburg, Germany
| | - Nina Hensel
- Department of Medicine II, University Hospital Freiburg, Freiburg, Germany
| | - Volker Lohmann
- Department of Infectious Diseases, Molecular Virology, Centre for Integrative Infectious Disease Research (CIID), University of Heidelberg, Heidelberg, Germany
| | - Charlotte K Y Ng
- Department for BioMedical Research (DBMR), Oncogenomics Lab, University of Bern, Bern, Switzerland
| | | | - Stefan Wieland
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Markus H Heim
- Department of Biomedicine, University of Basel, Basel, Switzerland. .,Clarunis, University Center for Gastrointestinal and Liver Diseases, Basel, Switzerland.
| |
Collapse
|
4
|
Qu J, Qu HQ, Bradfield JP, Glessner JT, Chang X, Tian L, March M, Connolly JJ, Roizen JD, Sleiman PMA, Hakonarson H. Insights into non-autoimmune type 1 diabetes with 13 novel loci in low polygenic risk score patients. Sci Rep 2021; 11:16013. [PMID: 34362956 PMCID: PMC8346538 DOI: 10.1038/s41598-021-94994-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 07/20/2021] [Indexed: 01/21/2023] Open
Abstract
With polygenic risk score (PRS) for autoimmune type 1 diabetes (T1D), this study identified T1D cases with low T1D PRS and searched for susceptibility loci in these cases. Our hypothesis is that genetic effects (likely mediated by relatively rare genetic variants) of non-mainstream (or non-autoimmune) T1D might have been diluted in the previous studies on T1D cases in general. Two cohorts for the PRS modeling and testing respectively were included. The first cohort consisted of 3302 T1D cases and 6181 controls, and the independent second cohort consisted of 3297 T1D cases and 6169 controls. Cases with low T1D PRS were identified using PRSice-2 and compared to controls with low T1D PRS by genome-wide association (GWA) test. Thirteen novel genetic loci with high imputation quality (Quality Score r2 > 0.91) were identified of SNPs/SNVs associated with low PRS T1D at genome-wide significance (P ≤ 5.0 × E-08), in addition to 4 established T1D loci, 3 reported loci by our previous study, as well as 9 potential novel loci represented by rare SNVs, but with relatively low imputation quality (Quality Score r2 < 0.90). For the 13 novel loci, 9 regions have been reported of association with obesity related traits by previous GWA studies. Three loci encoding long intergenic non-protein coding RNAs (lncRNA), and 2 loci involved in N-linked glycosylation are also highlighted in this study.
Collapse
Affiliation(s)
- Jingchun Qu
- grid.239552.a0000 0001 0680 8770The Center for Applied Genomics, Children’s Hospital of Philadelphia, 3615 Civic Center Blvd, Abramson Building, Philadelphia, PA 19104 USA
| | - Hui-Qi Qu
- grid.239552.a0000 0001 0680 8770The Center for Applied Genomics, Children’s Hospital of Philadelphia, 3615 Civic Center Blvd, Abramson Building, Philadelphia, PA 19104 USA
| | | | - Joseph T. Glessner
- grid.239552.a0000 0001 0680 8770The Center for Applied Genomics, Children’s Hospital of Philadelphia, 3615 Civic Center Blvd, Abramson Building, Philadelphia, PA 19104 USA
| | - Xiao Chang
- grid.239552.a0000 0001 0680 8770The Center for Applied Genomics, Children’s Hospital of Philadelphia, 3615 Civic Center Blvd, Abramson Building, Philadelphia, PA 19104 USA
| | - Lifeng Tian
- grid.239552.a0000 0001 0680 8770The Center for Applied Genomics, Children’s Hospital of Philadelphia, 3615 Civic Center Blvd, Abramson Building, Philadelphia, PA 19104 USA
| | - Michael March
- grid.239552.a0000 0001 0680 8770The Center for Applied Genomics, Children’s Hospital of Philadelphia, 3615 Civic Center Blvd, Abramson Building, Philadelphia, PA 19104 USA
| | - John J. Connolly
- grid.239552.a0000 0001 0680 8770The Center for Applied Genomics, Children’s Hospital of Philadelphia, 3615 Civic Center Blvd, Abramson Building, Philadelphia, PA 19104 USA
| | - Jeffrey D. Roizen
- grid.25879.310000 0004 1936 8972Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Patrick M. A. Sleiman
- grid.239552.a0000 0001 0680 8770The Center for Applied Genomics, Children’s Hospital of Philadelphia, 3615 Civic Center Blvd, Abramson Building, Philadelphia, PA 19104 USA ,grid.25879.310000 0004 1936 8972Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA ,grid.239552.a0000 0001 0680 8770Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104 USA
| | - Hakon Hakonarson
- grid.239552.a0000 0001 0680 8770The Center for Applied Genomics, Children’s Hospital of Philadelphia, 3615 Civic Center Blvd, Abramson Building, Philadelphia, PA 19104 USA ,grid.25879.310000 0004 1936 8972Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA ,grid.239552.a0000 0001 0680 8770Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104 USA ,grid.239552.a0000 0001 0680 8770Division of Pulmonary Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104 USA
| |
Collapse
|
5
|
Jeong DE, Lee Y, Ham S, Lee D, Kwon S, Park HEH, Hwang SY, Yoo JY, Roh TY, Lee SJV. Inhibition of the oligosaccharyl transferase in Caenorhabditis elegans that compromises ER proteostasis suppresses p38-dependent protection against pathogenic bacteria. PLoS Genet 2020; 16:e1008617. [PMID: 32130226 PMCID: PMC7055741 DOI: 10.1371/journal.pgen.1008617] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 01/20/2020] [Indexed: 12/14/2022] Open
Abstract
The oligosaccharyl transferase (OST) protein complex mediates the N-linked glycosylation of substrate proteins in the endoplasmic reticulum (ER), which regulates stability, activity, and localization of its substrates. Although many OST substrate proteins have been identified, the physiological role of the OST complex remains incompletely understood. Here we show that the OST complex in C. elegans is crucial for ER protein homeostasis and defense against infection with pathogenic bacteria Pseudomonas aeruginosa (PA14), via immune-regulatory PMK-1/p38 MAP kinase. We found that genetic inhibition of the OST complex impaired protein processing in the ER, which in turn up-regulated ER unfolded protein response (UPRER). We identified vitellogenin VIT-6 as an OST-dependent glycosylated protein, critical for maintaining survival on PA14. We also showed that the OST complex was required for up-regulation of PMK-1 signaling upon infection with PA14. Our study demonstrates that an evolutionarily conserved OST complex, crucial for ER homeostasis, regulates host defense mechanisms against pathogenic bacteria. N-linked glycosylation is essential for the function of various proteins, but its effects on physiology at an organism level remain poorly understood. Using the roundworm Caenorhabditis elegans, we show that the oligosaccharyl transferase (OST) complex, which mediates the N-glycosylation of substrate proteins in the ER, reduces susceptibility to pathogenic bacteria, Pseudomonas aeruginosa. We find that OST enhances defense against P. aeruginosa via maintenance of ER unfolded protein response (UPRER) and up-regulation of cytosolic p38 MAP kinase signaling. Our findings propose an intriguing model for the organellar crosstalk between the ER and the cytosol in host defense mechanisms. Because the OST complex components are highly conserved among eukaryotes, our study on the regulation of cellular signaling and C. elegans physiology by the OST complex will provide an insight into the function of its mammalian counterpart.
Collapse
Affiliation(s)
- Dae-Eun Jeong
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, South Korea
| | - Yujin Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Yuseong-gu, Daejeon, South Korea
| | - Seokjin Ham
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Yuseong-gu, Daejeon, South Korea
| | - Dongyeop Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, South Korea
| | - Sujeong Kwon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Yuseong-gu, Daejeon, South Korea
| | - Hae-Eun H. Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Yuseong-gu, Daejeon, South Korea
| | - Sun-Young Hwang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, South Korea
| | - Joo-Yeon Yoo
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, South Korea
| | - Tae-Young Roh
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, South Korea
| | - Seung-Jae V. Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Yuseong-gu, Daejeon, South Korea
- * E-mail:
| |
Collapse
|
6
|
Chaffey PK, Guan X, Li Y, Tan Z. Using Chemical Synthesis To Study and Apply Protein Glycosylation. Biochemistry 2018; 57:413-428. [PMID: 29309128 DOI: 10.1021/acs.biochem.7b01055] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Protein glycosylation is one of the most common post-translational modifications and can influence many properties of proteins. Abnormal protein glycosylation can lead to protein malfunction and serious disease. While appreciation of glycosylation's importance is growing in the scientific community, especially in recent years, a lack of homogeneous glycoproteins with well-defined glycan structures has made it difficult to understand the correlation between the structure of glycoproteins and their properties at a quantitative level. This has been a significant limitation on rational applications of glycosylation and on optimizing glycoprotein properties. Through the extraordinary efforts of chemists, it is now feasible to use chemical synthesis to produce collections of homogeneous glycoforms with systematic variations in amino acid sequence, glycosidic linkage, anomeric configuration, and glycan structure. Such a technical advance has greatly facilitated the study and application of protein glycosylation. This Perspective highlights some representative work in this research area, with the goal of inspiring and encouraging more scientists to pursue the glycosciences.
Collapse
Affiliation(s)
- Patrick K Chaffey
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado , Boulder, Colorado 80303, United States
| | - Xiaoyang Guan
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado , Boulder, Colorado 80303, United States
| | - Yaohao Li
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado , Boulder, Colorado 80303, United States
| | - Zhongping Tan
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado , Boulder, Colorado 80303, United States
| |
Collapse
|
7
|
Guan X, Chaffey PK, Chen H, Feng W, Wei X, Yang LM, Ruan Y, Wang X, Li Y, Barosh KB, Tran AH, Zhu J, Liang W, Zheng YT, Wang X, Tan Z. O-GalNAcylation of RANTES Improves Its Properties as a Human Immunodeficiency Virus Type 1 Entry Inhibitor. Biochemistry 2017; 57:136-148. [PMID: 29202246 DOI: 10.1021/acs.biochem.7b00875] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Many human proteins have the potential to be developed as therapeutic agents. However, side effects caused by direct administration of natural proteins have significantly slowed expansion of protein therapeutics into the clinic. Post-translational modifications (PTMs) can improve protein properties, but because of significant knowledge gaps, we are considerably limited in our ability to apply PTMs to generate better protein therapeutics. Here, we seek to fill the gaps by studying the PTMs of a small representative chemotactic cytokine, RANTES. RANTES can inhibit HIV-1 infection by competing with it for binding to receptor CCR5 and stimulating CCR5 endocytosis. Unfortunately, RANTES can induce strong signaling, leading to severe inflammatory side effects. We apply a chemical biology approach to explore the potential of post-translationally modified RANTES as safe inhibitors of HIV-1 infection. We synthesized and systematically tested a library of RANTES isoforms for their ability to inhibit inflammatory signaling and prevent HIV-1 infection of primary human cells. Through this research, we revealed that most of the glycosylated variants have decreased inflammation-associated properties and identified one particular glyco variant, a truncated RANTES containing a Galβ1-3GalNAc disaccharide α-linked to Ser4, which stands out as having the best overall properties: relatively high HIV-1 inhibition potency but also weak inflammatory properties. Moreover, our results provided a structural basis for the observed changes in the properties of RANTES. Taken together, this work highlights the potential importance of glycosylation as an alternative strategy for developing CCR5 inhibitors to treat HIV-1 infection and, more generally, for reducing or eliminating unwanted properties of therapeutic proteins.
Collapse
Affiliation(s)
- Xiaoyang Guan
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado , Boulder, Colorado 80303, United States
| | - Patrick K Chaffey
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado , Boulder, Colorado 80303, United States
| | - Huan Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences , Kunming 650223, China
| | - Wei Feng
- Department of Chemistry & Biochemistry, Arizona State University , Tempe, Arizona 85287, United States
| | - Xiuli Wei
- Protein & Peptide Pharmaceutical Laboratory, Institute of Biophysics, Chinese Academy of Sciences , Beijing 100101, China
| | - Liu-Meng Yang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences , Kunming 650223, China
| | - Yuan Ruan
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado , Boulder, Colorado 80303, United States
| | - Xinfeng Wang
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado , Boulder, Colorado 80303, United States
| | - Yaohao Li
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado , Boulder, Colorado 80303, United States
| | - Kimberly B Barosh
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado , Boulder, Colorado 80303, United States
| | - Amy H Tran
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado , Boulder, Colorado 80303, United States
| | - Jaimie Zhu
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado , Boulder, Colorado 80303, United States
| | - Wei Liang
- Protein & Peptide Pharmaceutical Laboratory, Institute of Biophysics, Chinese Academy of Sciences , Beijing 100101, China
| | - Yong-Tang Zheng
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences , Kunming 650223, China
| | - Xu Wang
- Department of Chemistry & Biochemistry, Arizona State University , Tempe, Arizona 85287, United States
| | - Zhongping Tan
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado , Boulder, Colorado 80303, United States
| |
Collapse
|
8
|
Spohn G, Arenas-Ramirez N, Bouchaud G, Boyman O. Endogenous polyclonal anti–IL-1 antibody responses potentiate IL-1 activity during pathogenic inflammation. J Allergy Clin Immunol 2017; 139:1957-1965.e3. [DOI: 10.1016/j.jaci.2016.09.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 08/27/2016] [Accepted: 09/06/2016] [Indexed: 10/20/2022]
|
9
|
Chaffey PK, Guan X, Wang LX, Tan Z. Introduction: General Aspects of the Chemical Biology of Glycoproteins. CHEMICAL BIOLOGY OF GLYCOPROTEINS 2017. [DOI: 10.1039/9781782623823-00001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
This chapter is meant to serve as an introduction to the remainder of the book by providing general background on the chemical biology of glycoproteins as well as a brief review of the chapters that follow. The purpose here is to introduce some basic concepts common to many forms of glycosylation for those readers who may be unfamiliar with the field. We begin with a discussion of the strategies and methods used to study protein glycosylation. During the overview, an effort is made to highlight a few relevant aspects of chemical glycobiology, including glycoprotein biosynthesis and a brief description of the synthesis and function of glycoproteins. Finally, we have a summary of the contributions from chemical biology over the years. It is our hope that, after reading this introductory chapter, the reader will have a broad view of the chemical glycobiology field as it currently stands and a deeper appreciation for some of the unique ideas that chemical biology brings to the field.
Collapse
Affiliation(s)
- Patrick K. Chaffey
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado Boulder CO 80303 USA
| | - Xiaoyang Guan
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado Boulder CO 80303 USA
| | - Lai-Xi Wang
- Department of Chemistry and Biochemistry, University of Maryland College Park MD 20742 USA
| | - Zhongping Tan
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado Boulder CO 80303 USA
| |
Collapse
|
10
|
Abstract
Recombinant human erythropoietin (rHuEPO), such as the approved agents epoetin alfa and epoetin beta, has been used successfully for over 20 years to treat anemia in millions of patients. However, due to the relatively short half-life of the molecule (approximately 8 hours), frequent dosing may be required to achieve required hemoglobin levels. Therefore, a need was identified in some anemic patient populations for erythropoiesis stimulating agents with longer half-lives that required less frequent dosing. This need led to the development of second generation molecules which are modified versions of rHuEPO with improved pharma-cokinetic and pharmacodynamic properties such as darbepoetin alfa, a hyperglycosylated analog of rHuEPO, and pegzyrepoetin, a pegylated rHuEPO. Third generation molecules, such as peginesatide, which are peptide mimetics that have no sequence homology to rHuEPO have also recently been developed. The various molecular, pharmacokinetic, and pharmacodynamic properties of these and other erythropoiesis stimulating agents will be discussed in this review.
Collapse
|
11
|
Human matrix metalloproteinases: an ubiquitarian class of enzymes involved in several pathological processes. Mol Aspects Med 2011; 33:119-208. [PMID: 22100792 DOI: 10.1016/j.mam.2011.10.015] [Citation(s) in RCA: 164] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Accepted: 10/29/2011] [Indexed: 02/07/2023]
Abstract
Human matrix metalloproteinases (MMPs) belong to the M10 family of the MA clan of endopeptidases. They are ubiquitarian enzymes, structurally characterized by an active site where a Zn(2+) atom, coordinated by three histidines, plays the catalytic role, assisted by a glutamic acid as a general base. Various MMPs display different domain composition, which is very important for macromolecular substrates recognition. Substrate specificity is very different among MMPs, being often associated to their cellular compartmentalization and/or cellular type where they are expressed. An extensive review of the different MMPs structural and functional features is integrated with their pathological role in several types of diseases, spanning from cancer to cardiovascular diseases and to neurodegeneration. It emerges a very complex and crucial role played by these enzymes in many physiological and pathological processes.
Collapse
|
12
|
Sathish S, Shanthi P, Sachdanandam P. Mitigation of DMBA-induced mammary carcinoma in experimental rats by antiangiogenic property of Kalpaamruthaa. J Diet Suppl 2011; 8:144-57. [PMID: 22432686 DOI: 10.3109/19390211.2011.561824] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Extra cellular matrix (ECM) and basement membrane (BM) are important layers that regulate cell structure, cell migration, and cellular proliferation. Degradation of both ECM and BM mediated by proteases favors the tumor invasion and promotes angiogenesis. Female Sprague-Dawley rats weighing 180 ± 10 g were categorized into 6 groups. Group-1 animals served as vehicle control. Group-2 to Group-4 animals were administered with 7,12-dimethylbenz(a)anthracene (25 mg/rat dissolved in olive oil, orally) on day 1 of experimental period to induce mammary carcinoma. (After 90 days, mammary carcinoma was confirmed by histopathological examination). Group-3 and Group-4 rats were subsequently treated with Semecarpus anacardium nut milk extract (SA) and Kalpaamruthaa (KA), respectively. Group-5 and Group-6 animals served as drug control for SA and KA, respectively. Pro-angiogenic factors like proteases, cyclooxygenase-2, and vascular endothelial growth factor were elevated in tumor-bearing animals and decreased in SA- and KA-supplemented rats. Increased levels of these angiogenic factors in tumor-bearing rats indicate the progression of mammary tumor. The decreased levels of these angiogenic in SA- and KA-treated rats may be due to the ameliorative effect of phenolic compounds such as flavonoids, tannins, and other compounds present in the drug.
Collapse
Affiliation(s)
- Sivaprakasam Sathish
- Department of Medical Biochemistry, Dr. ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, Tamil Nadu, India
| | | | | |
Collapse
|
13
|
Chen SC, Ueng KC, Lee SH, Sun KT, Lee MC. Effect of T'ai Chi Exercise on Biochemical Profiles and Oxidative Stress Indicators in Obese Patients with Type 2 Diabetes. J Altern Complement Med 2010; 16:1153-9. [DOI: 10.1089/acm.2009.0560] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Affiliation(s)
- Shih-Chueh Chen
- Graduate Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Metabolism and Endocrinology, Cheng Ching Hospital, Taichung, Taiwan
| | - Kwo-Chang Ueng
- Department of Internal Medicine, School of Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Shu-Hsin Lee
- Graduate Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- School of Nursing, Chung Shan Medical University, Taichung, Taiwan
| | - Kuo-Ting Sun
- Department of Dentistry, China Medical University Hospital, Taiwan
| | - Meng-Chih Lee
- Graduate Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Family and Community Medicine, Chung Shan Medical University Hospital, Taiwan
| |
Collapse
|
14
|
Telgenhoff D, Lam K, Ramsay S, Vasquez V, Villareal K, Slusarewicz P, Attar P, Shroot B. Influence of papain urea copper chlorophyllin on wound matrix remodeling. Wound Repair Regen 2007; 15:727-35. [DOI: 10.1111/j.1524-475x.2007.00279.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
15
|
Abstract
UNLABELLED Glycosylation plays an important role in a number of therapeutic proteins, including monoclonal antibodies. The enzymatic activity of a therapeutic protein is mainly determined by the protein structure, whereas the pharmacokinetics, pharmacodistribution, solubility, stability, enhancement of effector function and receptor binding are all influenced by the carbohydrate moiety. Hyperglycosylated proteins show increased serum half-life, are less sensitive to proteolysis and more heat-stable compared with the non-glycosylated forms. Molecular engineering of the TNK-tissue plasminogen activator molecule results in a more complex type of glycosylation and increases the half-life of the protein, which allows a single bolus injection at a lower dose for the treatment of acute myocardial infarction. Antibody-dependent cell cytotoxicity (ADCC) is determined partially by the specific N-glycosylation of the Fc domain of the monoclonal antibody. Specific glycoforms of monoclonal antibodies, which interact solely with the FcgammaRIIIa receptor of natural killer cells, result in superior ADCC compared with heterogeneous glycoforms that interact with different Fc receptors. This demonstrates that glycoengineering for directed glycosylation of therapeutic proteins can improve the therapeutic effect. While the amino acid sequence of the therapeutic protein is determined by the nucleotide sequence of the inserted gene, glycosylation depends on the glycosylating enzymes in the endoplasmatic reticulum and the Golgi apparatus of the eukaryotic host cell. In addition, the glycosylation of the therapeutic protein is affected by the culture medium used, the efficiency of protein expression and the physiological status of the host cell. CONCLUSION For a given protein, changes in the type of host cell, composition of the culture media and fermentation conditions during process development will most likely result in changes in the site occupation and heterogeneity of glycosylation. This, of course, can influence the therapeutic profile. Therefore, the early selection of the host cell and selection of upstream parameters are key in the process development of a product.
Collapse
|
16
|
Yeh SH, Chuang H, Lin LW, Hsiao CY, Wang PW, Yang KD. Tai chi chuan exercise decreases A1C levels along with increase of regulatory T-cells and decrease of cytotoxic T-cell population in type 2 diabetic patients. Diabetes Care 2007; 30:716-8. [PMID: 17327347 DOI: 10.2337/dc06-1507] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Shu-Hui Yeh
- Department of Nursing, Chang Gung Institute of Technology, Kwei-Shan, Taoyuan, Taiwan
| | | | | | | | | | | |
Collapse
|
17
|
Zhou F, Wang ML, Albert HH, Moore PH, Zhu YJ. Efficient transient expression of human GM-CSF protein in Nicotiana benthamiana using potato virus X vector. Appl Microbiol Biotechnol 2006; 72:756-62. [PMID: 16612640 DOI: 10.1007/s00253-005-0305-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2005] [Revised: 12/10/2005] [Accepted: 12/16/2005] [Indexed: 10/24/2022]
Abstract
The human granulocyte macrophage colony-stimulating factor (GM-CSF) is a glycoprotein with important clinical applications for the treatment of neutropenia and aplastic anemia and reducing infections associated with bone marrow transplants. We evaluated the potential for using a potato virus X (PVX) viral vector system for efficient expression of the biologically functional GM-CSF protein in Nicotiana benthamiana leaves. The GM-CSF gene was cloned into PVX viral expression vector, driven with the CaMV 35S promoter. Gene transfer was accomplished by inoculating N. benthamiana leaves with the plasmid DNA of PVX vector containing the GM-CSF gene. The expression level of the recombinant GM-CSF protein was determined with ELISA and its size was confirmed by Western blot analysis. The results showed that: (1) leaf age significantly affects GM-CSF protein concentration with younger leaves accumulating 19.8 mg g(-1) soluble protein which is 2.6 times the concentration in older leaves, (2) recombinant protein accumulation within a given leaf declined slightly over time but was not significantly different between 7 and 11 days post-inoculation (dpi), and (3) the two leaves immediately above the inoculated leaves play an important role for GM-CSF accumulation in the younger leaves. Protein extracts of infected N. benthamiana leaves contained recombinant human GM-CSF protein in concentrations of up to 2% of total soluble protein, but only when the pair of leaves immediately above the inoculated leaves remained intact. The recombinant protein actively stimulated the growth of human TF-1 cells suggesting that the recombinant human GM-CSF expressed via PVX viral vector was biologically active.
Collapse
Affiliation(s)
- Fengyong Zhou
- Hawaii Agriculture Research Center, 99-193 Aiea Heights Drive, Aiea, HI 96701, USA
| | | | | | | | | |
Collapse
|
18
|
Sinclair AM, Elliott S. Glycoengineering: the effect of glycosylation on the properties of therapeutic proteins. J Pharm Sci 2006; 94:1626-35. [PMID: 15959882 DOI: 10.1002/jps.20319] [Citation(s) in RCA: 323] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Therapeutic proteins have revolutionized the treatment of many diseases but low activity or rapid clearance limits their utility. New approaches have been taken to design drugs with enhanced in vivo activity and half-life to reduce injection frequency, increase convenience, and improve patient compliance. One recently used approach is glycoengineering, changing protein-associated carbohydrate to alter pharmacokinetic properties of proteins. This technology has been applied to erythropoietin and resulted in the discovery of darbepoetin alfa (DA), a hyperglycosylated analogue of erythropoietin that contains two additional N-linked carbohydrates, a threefold increase in serum half-life and increased in vivo activity compared to recombinant human erythropoietin (rHuEPO). The increased serum half-life allows for less frequent dosing to maintain target hemoglobin levels in anemic patients. Carbohydrates on DA and other molecules can also increase molecular stability, solubility, increase in vivo biological activity, and reduce immunogenicity. These properties are discussed.
Collapse
Affiliation(s)
- Angus M Sinclair
- Amgen, Inc., One Amgen Center Drive, Thousand Oaks, CA 91320-1799, USA.
| | | |
Collapse
|
19
|
Wang ML, Goldstein C, Su W, Moore PH, Albert HH. Production of biologically active GM-CSF in sugarcane: a secure biofactory. Transgenic Res 2005; 14:167-78. [PMID: 16022388 DOI: 10.1007/s11248-004-5415-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Over 300 transgenic sugarcane plants representing approx. 200 independent lines producing the human cytokine granulocyte macrophage colony stimulating factor (GM-CSF) were analyzed for recombinant protein accumulation and activity levels. Expression constructs differed in use of the maize polyubiquitin 1, Mubi-1, or the sugarcane polyubiquitin 9, SCubi9, promoters; presence or absence of a C-terminal HDEL tag for ER retention; and presence or absence of a 6X Histidine tag for metal ion affinity purification. Accumulation of GM-CSF protein ranged from undetectable to 0.02% of total soluble protein. No significant difference was observed between the two promoters; however, the ER retention tag was required for higher accumulation levels. Human bone marrow cells (TF-1), which require GM-CSF for cell division, proliferated when growth media was supplemented with transgenic sugarcane extracts. Comparison to purified commercially produced GM-CSF indicated the sugarcane-produced protein had essentially identical activity levels. In a 14-month field trial, accumulation levels remained stable. This is the first report of field production of GM-CSF. During the field trial, no flowering of the trial plants occurred; no pollen or seed was produced. Drying, burning, and burial of the test plants effectively blocked possible routes for the transgenic sugarcane to enter the environment or food supply. Sugarcane may provide a highly secure system for biofactory production of pharmaceutical proteins.
Collapse
Affiliation(s)
- Ming-Li Wang
- Hawaii Agriculture Research Center, Aiea, HI 96701, USA
| | | | | | | | | |
Collapse
|
20
|
Logsdon NJ, Jones BC, Allman JC, Izotova L, Schwartz B, Pestka S, Walter MR. The IL-10R2 binding hot spot on IL-22 is located on the N-terminal helix and is dependent on N-linked glycosylation. J Mol Biol 2004; 342:503-14. [PMID: 15327950 DOI: 10.1016/j.jmb.2004.07.069] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2004] [Revised: 07/19/2004] [Accepted: 07/20/2004] [Indexed: 01/26/2023]
Abstract
IL-22 is a class 2 alpha-helical cytokine involved in the generation of inflammatory responses. These activities require IL-22 to engage the cell surface receptors IL-22R1 and the low-affinity signaling molecule IL-10R2. IL-10R2 also interacts with five other class 2 cytokines: IL-10, IL-26, and the interferon-like cytokines IL-28A, IL-28B, and IL-29. Here, we define the IL-10R2 binding site on IL-22 using surface plasmon resonance (SPR) and site-directed mutagenesis. Surprisingly, the binding hot spot on IL-22 includes asparagine 54 (N54), which is post-translationally modified by N-linked glycosylation. Further characterization of the glycosylation reveals that only a single fucosylated N-acetyl glucosamine on N54 is required for maximal IL-10R2 binding. Biological responses of IL-22 mutants measured in cell-based luciferase assays correlate with the in vitro SPR studies. Together, these data suggest that IL-22 activity may be modulated via changes in the glycosylation state of the ligand during inflammation.
Collapse
Affiliation(s)
- Naomi J Logsdon
- Center for Biophysical Sciences and Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Drescher B, Witte T, Schmidt RE. Glycosylation of FcgammaRIII in N163 as mechanism of regulating receptor affinity. Immunology 2003; 110:335-40. [PMID: 14632661 PMCID: PMC1783064 DOI: 10.1046/j.1365-2567.2003.01743.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human FcgammaRIII (CD16) is a low-affinity receptor for immunoglobulin G (IgG). There are two different isoforms of this protein: CD16a (transmembranous, expressed on natural killer cells and on macrophages) and CD16b (glycosylphosphatidylinositol-linked, expressed on neutrophilic granulocytes in two allelic forms NA1 and NA2). Both forms of the protein have a variable glycosylation pattern. The NA1 allele of CD16B has four asparagine (N)-linked glycosylation sites. One of them (N163) is localized in the ligand-binding site of domain II. This site is shared by the NA2 allele and CD16A. To examine the functional role of the glycosylation we mutated the four glycosylation sites of the NA1 allele (N39, N75, N163, N170) into glutamine (Q). HEK293 cells were stably transfected with the single mutants and wild-type CD16 as control. We determined binding of human IgG to transfected cells using immunofluorescence studies with anti-human IgG antibody. Monomeric IgG bound to N163Q transfectants with higher affinity than to other transfectants, showing that glycosylation in N163 influences the affinity of CD16 to its ligand. In addition, preincubation of WT-CD16-transfected cells with Tunicamycin (an inhibitor of N-glycosylation) resulted in an increased binding of monomeric IgG whereas N163Q-CD16-transfected cells remained unaffected. Therefore, glycosylation in N163 is a mechanism of regulating affinity of FcgammaRIII to its ligand IgG.
Collapse
Affiliation(s)
- Bettina Drescher
- Department of Clinical Immunology, Hannover Medical School, Carl-Neuberg-Str 1, D-30625 Hannover, Germany
| | | | | |
Collapse
|
22
|
Jolly CA, Muthukumar A, Avula CP, Troyer D, Fernandes G. Life span is prolonged in food-restricted autoimmune-prone (NZB x NZW)F(1) mice fed a diet enriched with (n-3) fatty acids. J Nutr 2001; 131:2753-60. [PMID: 11584100 DOI: 10.1093/jn/131.10.2753] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Moderate food and/or energy (calorie) restriction delays age-related immune dysfunction and prolongs life span in multiple animal models. The amount and type of dietary fatty acids can also profoundly affect life span. Marine-derived fish oils contain (n-3) fatty acids, which have potent anti-inflammatory properties. We therefore examined the influence of food restriction (40% overall reduction in intake of all dietary components) combined with substitution of fish oil for corn oil in a factorial design. Autoimmune-prone (NZB x NZW)F(1) (B/W) mice, which develop fatal autoimmune renal disease, were used. The food-restricted/fish oil diet maximally extended median life span to 645 d (vs. 494 d for the food-restricted corn oil diet). Similarly, fish oil prolonged life span in the ad libitum-fed mice to 345 d (vs. 242 for the ad libitum/corn oil diet). Increased life span was partially associated with decreased body weight, blunting renal proinflammatory cytokine (interferon-gamma, interleukins-10 and -12 and tumor necrosis factor-alpha) levels and lower nuclear factor-kappaB (NF-kappaB). Reductions in NF-kappaB were preceded by enhanced superoxide dismutase, catalase and glutathione peroxidase activities. These findings demonstrate the profound additive effects of food restriction and (n-3) fatty acids in prolonging life span in B/W mice. These observations may have additional implications in the management of obesity, diabetes, cancer and/or the aging process.
Collapse
Affiliation(s)
- C A Jolly
- Division of Clinical Immunology, Department of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900, USA
| | | | | | | | | |
Collapse
|
23
|
Azuma T, Watanabe N, Yagisawa H, Hirata H, Iwamura M, Kobayashi Y. Induction of apoptosis of activated murine splenic T cells by cycloprodigiosin hydrochloride, a novel immunosuppressant. IMMUNOPHARMACOLOGY 2000; 46:29-37. [PMID: 10665777 DOI: 10.1016/s0162-3109(99)00153-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Two types of immunosuppressants, cycloprodigiosin hydrochloride (cPrG) and L-leucyl-L-leucine methyl ester (LeuLeuOMe), both have the ability to selectively inhibit the lysosomal function, and a related compound to cPrG, prodigiosin 25-C, and LeuLeuOMe have been reported to selectively inhibit the T cell function in vitro. We therefore examined the cell-type specificity of cPrG and LeuLeuOMe using murine splenocytes. Concanavalin A (Con A)- and lentil lectin-induced proliferation was suppressed by cPrG more profoundly than lipopolysaccharide-induced proliferation. At the optimal concentration, Con A induced the proliferation of both CD4+ and CD8+ cells, whereas at a supra-optimal concentration Con A induced rather selective proliferation of CD8+ cells. Irrespective of the dose of Con A, CD4+ and CD8+ cells were equally affected by cPrG. In contrast, LeuLeuOMe induced the selective loss of CD8+ cells. cPrG enhanced the apoptosis of murine splenocytes and nylon fiber column-purified T cells cultured in the presence of Con A, as shown by the decrease in cell size and/or DNA fragmentation. Overall, this study revealed that the cell-type specificity of cPrG is different from that of LeuLeuOMe, and that the immunosuppression by cPrG is associated with apoptosis.
Collapse
Affiliation(s)
- T Azuma
- Department of Biomolecular Science, Faculty of Science, Toho University, Funabashi, Chiba, Japan
| | | | | | | | | | | |
Collapse
|
24
|
Cuzner ML, Opdenakker G. Plasminogen activators and matrix metalloproteases, mediators of extracellular proteolysis in inflammatory demyelination of the central nervous system. J Neuroimmunol 1999; 94:1-14. [PMID: 10376931 DOI: 10.1016/s0165-5728(98)00241-0] [Citation(s) in RCA: 221] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The role of extracellular proteolysis in inflammatory demyelination, originally hypothesized as a mechanism for myelin degradation, is increasingly recognized as a pathogenetic step and as a target for therapy in human demyelinating disease. The activation of ubiquitous plasminogen by urokinase (u-PA) and tissue-type plasminogen activator (t-PA), which is associated with various neuropathologies, including multiple sclerosis (MS), is the key initiator of the activation cascade of the four classes of matrix metalloproteinases (MMPs): collagenases, stromelysins, membrane-type metalloproteinases and gelatinases. Spatiotemporal protein and mRNA expression of gelatinase B (MMP-9) and matrilysin (MMP-7) have been documented respectively in MS lesions and in the central nervous system (CNS) of animals developing experimental autoimmune encephalomyelitis (EAE). A close interaction between disease-promoting cytokines and extracellularly acting proteases is deduced from in vitro experiments. Cytokines regulate the balance between the proteases and their respective specific inhibitors at the transcriptional level, while proteolysis is a reciprocal mechanism to enhance (by activation) or downmodulate (by degradation) the specific activities of cytokines. In acute inflammation the contribution of chemokines is hierarchically organised, interleukin-8 (IL-8) and related CXC-chemokines inducing a rapid influx of neutrophils in the acute lesions and an instantaneous exocytosis of gelatinase B granules. This results in sudden and extensive damage to the CNS. In chronic disease involving autoimmune processes CC-chemokines that act mainly on mononuclear cell types appear to be more strictly regulated. As MMPs modify matrix components, promoting extravasation of lymphocytes and monocytes/macrophages and have the potential to generate encephalitogenic peptides from myelin basic protein, novel treatments for demyelinating diseases may be predicted by specific inhibition of these enzymes. Here we review plasminogen activators and the MMP family, in the context of their role in CNS inflammation and demyelination and highlight studies in which intervention in these protease cascades are and may be used to treat demyelinating diseases.
Collapse
Affiliation(s)
- M L Cuzner
- Department of Neurochemistry, Institute of Neurology, University of College London, UK
| | | |
Collapse
|