Huang XL, Li XJ, Li Y, Huang LZ. The effect of AOA on ethylene and polyamine metabolism during early phases of somatic embryogenesis in Medicago sativa.
PHYSIOLOGIA PLANTARUM 2001;
113:424-429. [PMID:
12060289 DOI:
10.1034/j.1399-3054.2001.1130317.x]
[Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Changes in the levels of ethylene, 1-aminocyclopropane-1-carboxylic acid (ACC), 1-(malonylamino)cyclopropane-1-carboxylic acid (MACC) and polyamines were simultaneously investigated during the early phases of alfalfa somatic embryogenesis. These included the period of induction and subculture of callus, and 3- and 7-day suspension cultures for the induction of somatic embryogenesis. The polyamines contained in the embryogenic callus were found to include putrescine (Put), spermidine (Spd) and spermine (Spm), but the level of Spm was much less than that of Put and Spd. There was a dramatic increase in MACC after induction of embryogenesis, and ACC levels were lower in somatic embryos than in embryogenic callus. Induction of embryogenesis for 3 days increased the levels of ACC and polyamines to a maximum level, and these then reduced as the embryogenesis proceeded. The ratios of Put/Spd and ACC/MACC were decreased during the induction. This indicated that both high levels of ACC and polyamines might be a prerequisite for early differentiation during the induction of the embryogenesis. Thus, there appears not to be competition between polyamine biosynthesis and ethylene biosynthesis at least during the induction of somatic embryogenesis, because both the polyamines and ACC were simultaneously increased during the induction period. Conversion of ACC into MACC and the maintenance of a relatively high level of polyamines, especially Spd, appear to be important for further development of the embryos. When aminooxylvinylglycine (AOA) was added at the initiation of the callus subculture, it had no significant effect on the callus growth, the ethylene production and ACC level of the callus. However, AOA increased the numbers of the embryos accompanying an increase in Spd level and S-adenosylmethionine decarboxylase (SAMDC) activity. Thus, the AOA effect could be associated with Spd increase rather than with the effect of ethylene biosynthesis.
Collapse