Chen H, Peng L, Pérez de Nanclares M, Trudeau MP, Yao D, Cheng Z, Urriola PE, Mydland LT, Shurson GC, Overland M, Chen C. Identification of Sinapine-Derived Choline from a Rapeseed Diet as a Source of Serum Trimethylamine
N-Oxide in Pigs.
JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019;
67:7748-7754. [PMID:
31203621 DOI:
10.1021/acs.jafc.9b02950]
[Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Choline and its metabolites have diverse and important functions in many physiological processes, especially for anabolic metabolism in growth and reproduction. Besides endogenous biosynthesis and direct choline supplement, choline esters in the diet are another source of choline in the body. Phenolic choline esters are a group of unique dietary choline esters rich in the seeds of Brassicaceae plants, among which sinapine is a choline ester of sinapic acid abundant in rapeseed. In this study, 40 nursery pigs were fed with rapeseed-derived feed ingredients (RSF) or soybean meal for 3 weeks (20 pigs/diet). The metabolic fate of sinapine-derived choline in RSF was examined by comparing the distribution of choline and its metabolites in digesta, liver, and serum samples by liquid chromatography-mass spectrometry analysis. The results showed that choline was released from extensive hydrolysis of sinapine in the small intestine. However, sinapine-derived choline did not increase the levels of choline and its major metabolites, including betaine, phosphocholine, and glycerophosphocholine, in the liver and serum. Instead, RSF feeding increased trimethylamine (TMA), the microbial metabolite of choline, in the large intestine and further increased trimethylamine N-oxide (TMAO), the oxidation metabolite of TMA, in the liver and serum. Overall, these results suggested that sinapine-derived choline from rapeseed feeding had limited influences on the post-absorption choline pool as a result of its low bioavailability but may serve as a major source of TMAO through microbial metabolism in nursery pigs. Improving the bioavailability of sinapine-derived choline might have the potential to modify the nutritional values and functionalities of rapeseed meal in swine feeding.
Collapse