1
|
Vetter J, Lee M, Eichwald C. The Role of the Host Cytoskeleton in the Formation and Dynamics of Rotavirus Viroplasms. Viruses 2024; 16:668. [PMID: 38793550 PMCID: PMC11125917 DOI: 10.3390/v16050668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/26/2024] Open
Abstract
Rotavirus (RV) replicates within viroplasms, membraneless electron-dense globular cytosolic inclusions with liquid-liquid phase properties. In these structures occur the virus transcription, replication, and packaging of the virus genome in newly assembled double-layered particles. The viroplasms are composed of virus proteins (NSP2, NSP5, NSP4, VP1, VP2, VP3, and VP6), single- and double-stranded virus RNAs, and host components such as microtubules, perilipin-1, and chaperonins. The formation, coalescence, maintenance, and perinuclear localization of viroplasms rely on their association with the cytoskeleton. A stabilized microtubule network involving microtubules and kinesin Eg5 and dynein molecular motors is associated with NSP5, NSP2, and VP2, facilitating dynamic processes such as viroplasm coalescence and perinuclear localization. Key post-translation modifications, particularly phosphorylation events of RV proteins NSP5 and NSP2, play pivotal roles in orchestrating these interactions. Actin filaments also contribute, triggering the formation of the viroplasms through the association of soluble cytosolic VP4 with actin and the molecular motor myosin. This review explores the evolving understanding of RV replication, emphasizing the host requirements essential for viroplasm formation and highlighting their dynamic interplay within the host cell.
Collapse
Affiliation(s)
| | | | - Catherine Eichwald
- Institute of Virology, University of Zurich, 8057 Zurich, Switzerland; (J.V.); (M.L.)
| |
Collapse
|
2
|
Rahman SK, Ampah KK, Roy P. Role of NS2 specific RNA binding and phosphorylation in liquid-liquid phase separation and virus assembly. Nucleic Acids Res 2022; 50:11273-11284. [PMID: 36259663 DOI: 10.1093/nar/gkac904] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/28/2022] [Accepted: 10/08/2022] [Indexed: 11/13/2022] Open
Abstract
Liquid-liquid phase separation (LLPS) has assumed a prominent role in biological cell systems, where it underpins the formation of subcellular compartments necessary for cell function. We investigated the underlying mechanism of LLPS in virus infected cells, where virus inclusion bodies are formed by an RNA-binding phosphoprotein (NS2) of Bluetongue virus to serve as sites for subviral particle assembly and virus maturation. We show that NS2 undergoes LLPS that is dependent on protein phosphorylation and RNA-binding and that LLPS occurrence is accompanied by a change in protein secondary structure. Site-directed mutagenesis identified two critical arginine residues in NS2 responsible for specific RNA binding and thus for NS2-RNA complex driven LLPS. Reverse genetics identified the same residues as essential for VIB assembly in infected cells and virus viability. Our findings suggest that a specific arginine-RNA interaction in the context of a phosphorylated state drives LLPS in this, and possibly other, virus infections.
Collapse
Affiliation(s)
- Shah Kamranur Rahman
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London WC1E 7HT UK
| | - Khamal Kwesi Ampah
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London WC1E 7HT UK
| | - Polly Roy
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London WC1E 7HT UK
| |
Collapse
|
3
|
Zhang Y, Wen Z, Shi X, Liu YJ, Eriksson JE, Jiu Y. The diverse roles and dynamic rearrangement of vimentin during viral infection. J Cell Sci 2020; 134:134/5/jcs250597. [PMID: 33154171 DOI: 10.1242/jcs.250597] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Epidemics caused by viral infections pose a significant global threat. Cytoskeletal vimentin is a major intermediate filament (IF) protein, and is involved in numerous functions, including cell signaling, epithelial-mesenchymal transition, intracellular organization and cell migration. Vimentin has important roles for the life cycle of particular viruses; it can act as a co-receptor to enable effective virus invasion and guide efficient transport of the virus to the replication site. Furthermore, vimentin has been shown to rearrange into cage-like structures that facilitate virus replication, and to recruit viral components to the location of assembly and egress. Surprisingly, vimentin can also inhibit virus entry or egress, as well as participate in host-cell defense. Although vimentin can facilitate viral infection, how this function is regulated is still poorly understood. In particular, information is lacking on its interaction sites, regulation of expression, post-translational modifications and cooperation with other host factors. This Review recapitulates the different functions of vimentin in the virus life cycle and discusses how they influence host-cell tropism, virulence of the pathogens and the consequent pathological outcomes. These insights into vimentin-virus interactions emphasize the importance of cytoskeletal functions in viral cell biology and their potential for the identification of novel antiviral targets.
Collapse
Affiliation(s)
- Yue Zhang
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China.,University of Chinese Academy of Sciences, Yuquan Road No. 19(A), Shijingshan District, Beijing 100049, China
| | - Zeyu Wen
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China.,University of Chinese Academy of Sciences, Yuquan Road No. 19(A), Shijingshan District, Beijing 100049, China
| | - Xuemeng Shi
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yan-Jun Liu
- Shanghai Institute of Cardiovascular Diseases, and Institutes of Biomedical Sciences, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - John E Eriksson
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku FI-20520, Finland .,Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku FI-20520, Finland
| | - Yaming Jiu
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China .,University of Chinese Academy of Sciences, Yuquan Road No. 19(A), Shijingshan District, Beijing 100049, China
| |
Collapse
|
4
|
Shaw AE, Brüning-Richardson A, Morrison EE, Bond J, Simpson J, Ross-Smith N, Alpar O, Mertens PPC, Monaghan P. Bluetongue virus infection induces aberrant mitosis in mammalian cells. Virol J 2013; 10:319. [PMID: 24165208 PMCID: PMC3874736 DOI: 10.1186/1743-422x-10-319] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 09/27/2013] [Indexed: 12/25/2022] Open
Abstract
Background Bluetongue virus (BTV) is an arbovirus that is responsible for ‘bluetongue’, an economically important disease of livestock. Although BTV is well characterised at the protein level, less is known regarding its interaction with host cells. During studies of virus inclusion body formation we observed what appeared to be a large proportion of cells in mitosis. Although the modulation of the cell cycle is well established for many viruses, this was a novel observation for BTV. We therefore undertook a study to reveal in more depth the impact of BTV upon cell division. Methods We used a confocal microscopy approach to investigate the localisation of BTV proteins in a cellular context with their respective position relative to cellular proteins. In addition, to quantitatively assess the frequency of aberrant mitosis induction by the viral non-structural protein (NS) 2 we utilised live cell imaging to monitor HeLa-mCherry tubulin cells transfected with a plasmid expressing NS2. Results Our data showed that these ‘aberrant mitoses’ can be induced in multiple cell types and by different strains of BTV. Further study confirmed multiplication of the centrosomes, each resulting in a separate mitotic spindle during mitosis. Interestingly, the BTV NS1 protein was strongly localised to the centrosomal regions. In a separate, yet related observation, the BTV NS2 protein was co-localised with the condensed chromosomes to a region suggestive of the kinetochore. Live cell imaging revealed that expression of an EGFP-NS2 fusion protein in HeLa-mCherry tubulin cells also results in mitotic defects. Conclusions We hypothesise that NS2 is a microtubule cargo protein that may inadvertently disrupt the interaction of microtubule tips with the kinetochores during mitosis. Furthermore, the BTV NS1 protein was distinctly localised to a region encompassing the centrosome and may therefore be, at least in part, responsible for the disruption of the centrosome as observed in BTV infected mammalian cells.
Collapse
|
5
|
Capocefalo A, Franceschi V, Mertens PP, Castillo-Olivares J, Cavirani S, Di Lonardo E, Leni Z, Donofrio G. Expression and secretion of Bluetongue virus serotype 8 (BTV-8)VP2 outer capsid protein by mammalian cells. J Virol Methods 2010; 169:420-4. [PMID: 20705105 DOI: 10.1016/j.jviromet.2010.08.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 07/27/2010] [Accepted: 08/03/2010] [Indexed: 11/27/2022]
Abstract
VP2 is the outermost Bluetongue virus (BTV) antigenic protein, forming triskelion motifs on the virion surface. Although VP2 has been expressed successfully through many systems, its paracrine expression as a soluble form by mammalian cells represents a difficult task. In the present paper two fragments of VP2 have been expressed successfully into the medium of transiently transfected mammalian cells through a fusion peptides strategy. The crude conditioned medium containing the secreted peptide could be employed for immunodiagnostic assay development or vaccine purposes.
Collapse
Affiliation(s)
- A Capocefalo
- Dipartimento di Salute Animale, Facoltà di Medicina Veterinaria, Università di Parma, via del Taglio 10, 43100 Parma, Italy
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Bluetongue virus outer capsid protein VP5 interacts with membrane lipid rafts via a SNARE domain. J Virol 2008; 82:10600-12. [PMID: 18753209 DOI: 10.1128/jvi.01274-08] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bluetongue virus (BTV) is a nonenveloped double-stranded RNA virus belonging to the family Reoviridae. The two outer capsid proteins, VP2 and VP5, are responsible for virus entry. However, little is known about the roles of these two proteins, particularly VP5, in virus trafficking and assembly. In this study, we used density gradient fractionation and methyl beta cyclodextrin, a cholesterol-sequestering drug, to demonstrate not only that VP5 copurifies with lipid raft domains in both transfected and infected cells, but also that raft domain integrity is required for BTV assembly. Previously, we showed that BTV nonstructural protein 3 (NS3) interacts with VP2 and also with cellular exocytosis and ESCRT pathway proteins, indicating its involvement in virus egress (A. R. Beaton, J. Rodriguez, Y. K. Reddy, and P. Roy, Proc. Natl. Acad. Sci. USA 99:13154-13159, 2002; C. Wirblich, B. Bhattacharya, and P. Roy J. Virol. 80:460-473, 2006). Here, we show by pull-down and confocal analysis that NS3 also interacts with VP5. Further, a conserved membrane-docking domain similar to the motif in synaptotagmin, a protein belonging to the SNARE (soluble N-ethylmaleimide-sensitive fusion attachment protein receptor) family was identified in the VP5 sequence. By site-directed mutagenesis, followed by flotation and confocal analyses, we demonstrated that raft association of VP5 depends on this domain. Together, these results indicate that VP5 possesses an autonomous signal for its membrane targeting and that the interaction of VP5 with membrane-associated NS3 might play an important role in virus assembly.
Collapse
|
7
|
Abstract
Bluetongue is a vector-borne viral disease of ruminants that is endemic in tropical and subtropical countries. Since 1998 the virus has also appeared in Europe. Partly due to the seriousness of the disease, bluetongue virus (BTV), a member of genus Orbivirus within the family Reoviridae, has been a subject of intense molecular study for the last three decades and is now one of the best understood viruses at the molecular and structural levels. BTV is a complex non-enveloped virus with seven structural proteins arranged in two capsids and a genome of ten double-stranded (ds) RNA segments. Shortly after cell entry, the outer capsid is lost to release an inner capsid (the core) which synthesizes capped mRNAs from each genomic segment, extruding them into the cytoplasm. This requires the efficient co-ordination of a number of enzymes, including helicase, polymerase and RNA capping activities. This review will focus on our current understanding of these catalytic proteins as derived from the use of recombinant proteins, combined with functional assays and the in vitro reconstitution of the transcription/replication complex. In some cases, 3D structures have complemented this analysis to reveal the fine structural detail of these proteins. The combined activities of the core enzymes produce infectious transcripts necessary and sufficient to initiate BTV infection. Such infectious transcripts can now be synthesized wholly in vitro and, when introduced into cells by transfection, lead to the recovery of infectious virus. Future studies thus hold the possibility of analysing the consequence of mutation in a replicating virus system.
Collapse
Affiliation(s)
- Polly Roy
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| |
Collapse
|
8
|
Bhattacharya B, Noad RJ, Roy P. Interaction between Bluetongue virus outer capsid protein VP2 and vimentin is necessary for virus egress. Virol J 2007; 4:7. [PMID: 17224050 PMCID: PMC1783847 DOI: 10.1186/1743-422x-4-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2006] [Accepted: 01/15/2007] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND The VP2 outer capsid protein Bluetongue Virus (BTV) is responsible for receptor binding, haemagglutination and eliciting host-specific immunity. However, the assembly of this outer capsid protein on the transcriptionally active viral core would block transcription of the virus. Thus assembly of the outer capsid on the core particle must be a tightly controlled process during virus maturation. Earlier studies have detected mature virus particles associated with intermediate filaments in virus infected cells but the viral determinant for this association and the effect of disrupting intermediate filaments on virus assembly and release are unknown. RESULTS In this study it is demonstrated that BTV VP2 associates with vimentin in both virus infected cells and in the absence of other viral proteins. Further, the determinants of vimentin localisation are mapped to the N-terminus of the protein and deletions of amino acids between residues 65 and 114 are shown to disrupt VP2-vimentin association. Site directed mutation also reveals that amino acid residues Gly 70 and Val 72 are important in the VP2-vimentin association. Mutation of these amino acids resulted in a soluble VP2 capable of forming trimeric structures similar to unmodified protein that no longer associated with vimentin. Furthermore, pharmacological disruption of intermediate filaments, either directly or indirectly through the disruption of the microtubule network, inhibited virus release from BTV infected cells. CONCLUSION The principal findings of the research are that the association of mature BTV particles with intermediate filaments are driven by the interaction of VP2 with vimentin and that this interaction contributes to virus egress. Furthermore, i) the N-terminal 118 amino acids of VP2 are sufficient to confer vimentin interaction. ii) Deletion of amino acids 65-114 or mutation of amino acids 70-72 to DVD abrogates vimentin association. iii) Finally, disruption of vimentin structures results in an increase in cell associated BTV and a reduction in the amount of released virus from infected cells.
Collapse
Affiliation(s)
- Bishnupriya Bhattacharya
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK.
| | | | | |
Collapse
|
9
|
Abstract
Like other members of the Reoviridae, bluetongue virus faces the same constraints on structure and assembly that are imposed by a large dsRNA genome. However, since it is arthropod-transmitted, BTV must have assembly pathways that are sufficiently flexible to allow it to replicate in evolutionarily distant hosts. With this background, it is hardly surprising that BTV interacts with highly conserved cellular pathways during morphogenesis and trafficking. Indeed, recent studies have revealed striking parallels between the pathways involved in the entry and egress of nonenveloped BTV and those used by enveloped viruses. In addition, recent studies with the protein that is the major component of the BTV viroplasm have revealed how the assembly and, as importantly, the disassembly of this structure may be achieved. This is a first step towards resolving the interactions that occur in these virus 'assembly factories'. Overall, this review demonstrates that the integration of structural, biochemical and molecular data is necessary to fully understand the assembly and replication of this complex RNA virus.
Collapse
Affiliation(s)
- P Roy
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK.
| | | |
Collapse
|
10
|
Roy P. Bluetongue virus proteins and particles and their role in virus entry, assembly, and release. Adv Virus Res 2005; 64:69-123. [PMID: 16139593 DOI: 10.1016/s0065-3527(05)64004-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Polly Roy
- London School of Hygiene and Tropical Medicine, London WC1E 7HT, United Kingdom
| |
Collapse
|
11
|
Lymperopoulos K, Wirblich C, Brierley I, Roy P. Sequence specificity in the interaction of Bluetongue virus non-structural protein 2 (NS2) with viral RNA. J Biol Chem 2003; 278:31722-30. [PMID: 12794083 DOI: 10.1074/jbc.m301072200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The non-structural protein NS2 of Bluetongue virus (BTV) is synthesized abundantly in virus-infected cells and has been suggested to be involved in virus replication. The protein, with a high content of charged residues, possesses a strong affinity for single-stranded RNA species but, to date, all studies have failed to identify any specificity in the NS2-RNA interaction. In this report, we have examined, through RNA binding assays using highly purified NS2, the specificity of interaction with different single-stranded RNA (ssRNA) species in the presence of appropriate competitors. The data obtained show that NS2 indeed has a preference for BTV ssRNA over nonspecific RNA species and that NS2 recognizes a specific region within the BTV10 segment S10. The secondary structure of this region was determined and found to be a hairpin-loop with substructures within the loop. Modification-inhibition experiments highlighted two regions within this structure that were protected from ribonuclease cleavage in the presence of NS2. Overall, these data imply that a function of NS2 may be to recruit virus messenger RNAs (that also act as templates for synthesis of genomic RNAs) selectively from other RNA species within the infected cytosol of the cell during virus replication.
Collapse
Affiliation(s)
- Kostas Lymperopoulos
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom
| | | | | | | |
Collapse
|
12
|
Crameri GS, Wang LF, Eaton BT. Differentiation of cognate dsRNA genome segments of bluetongue virus reassortants by temperature gradient gel electrophoresis. J Virol Methods 1995; 51:211-9. [PMID: 7738141 DOI: 10.1016/0166-0934(94)00106-q] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The analysis of reassortant viruses has been a valuable tool in the investigation of protein interaction and function in double-stranded (ds) RNA virus research. The differentiation of cognate dsRNA genome segments of reassortants is conventionally achieved by SDS-polyacrylamide gel electrophoresis (SDS-PAGE). However, due to a high degree of sequence homology among different bluetongue virus (BTV) serotypes, it is not uncommon to find that certain cognate dsRNA segments cannot be differentiated by SDS-PAGE. Temperature gradient gel electrophoresis (TGGE) has been shown to be a much more sensitive method of differentiating RNA or DNA fragments of high sequence homology. Here we report the preliminary application of TGGE in analysis of genomic reassortants of two BTV serotypes, 1 and 23. While six out of ten genome segments between BTV-1 and BTV-23 could not be resolved by SDS-PAGE, all of them were differentiated by TGGE. The ability of TGGE to distinguish between dsRNA segments of high sequence homology may also make it useful in the search for BTV genes responsible for defined characteristics, such as virulence, by differentiating wild-type and mutated gene segments of viruses displaying altered phenotypes.
Collapse
Affiliation(s)
- G S Crameri
- CSIRO, Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | | | | |
Collapse
|
13
|
Traub P, Mothes E, Shoeman RL, Schröder R, Scherbarth A. Binding of nucleic acids to intermediate filaments of the vimentin type and their effects on filament formation and stability. J Biomol Struct Dyn 1992; 10:505-31. [PMID: 1492922 DOI: 10.1080/07391102.1992.10508665] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Guanine-rich polynucleotides such as poly(dG), oligo(dG)12-18 or poly(rG) were shown to exert a strong inhibitory effect on vimentin filament assembly and also to cause disintegration of preformed filaments in vitro. Gold-labeled oligo(dG)25 was preferentially localized at the physical ends of the aggregation and disaggregation products and at sites along filaments with a basic periodicity of 22.7 nm. Similar effects were observed with heat-denatured eukaryotic nuclear DNA or total rRNA, although these nucleic acids could affect filament formation and structure only at ionic strengths lower than physiological. However, whenever filaments were formed or stayed intact, they appeared associated with the nucleic acids. These electron microscopic observations were corroborated by sucrose gradient analysis of complexes obtained from preformed vimentin filaments and radioactively labeled heteroduplexes. Among the duplexes of the DNA type, particularly poly(dG).poly(dC), and, of those of the RNA type, preferentially poly(rA).poly(rU), were carried by the filaments with high efficiency into the pellet fraction. Single-stranded 18S and 28S rRNA interacted only weakly with vimentin filaments. Nevertheless, in a mechanically undisturbed environment, vimentin filaments could be densely decorated with intact 40S and 60S ribosomal subunits as revealed by electron microscopy. These results indicate that, in contrast to single-stranded nucleic acids with their compact random coil configuration, double-stranded nucleic acids with their elongated and flexible shape have the capability to stably interact with the helically arranged, surface-exposed amino-terminal polypeptide chains of vimentin filaments. Such interactions might be of physiological relevance in regard to the transport and positioning of nucleic acids and nucleoprotein particles in the various compartments of eukaryotic cells. Conversely, nucleic acids might be capable of affecting the cytoplasmic organization of vimentin filament networks through their filament-destabilizing potentials.
Collapse
Affiliation(s)
- P Traub
- Max-Planck-Institut für Zellbiologie, Rosenhof, Ladenburg bei Heidelberg, Federal Republic of Germany
| | | | | | | | | |
Collapse
|
14
|
Coen ML, Ellis JA, O'Toole DT, Wilson WC. Cytokine modulation of the interaction between bluetongue virus and endothelial cells in vitro. Vet Pathol 1991; 28:524-32. [PMID: 1722925 DOI: 10.1177/030098589102800610] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
An in vitro model was developed to examine the interaction between endothelial cells and the host inflammatory response in bluetongue virus (BTV) infections. Whole cell enzyme-linked immunosorbent assays, a tritiated thymidine uptake assay, and a colorimetric assay of mitochondrial function were used to assess how four cytokines (interleukin-1, interleukin-2, interferon-gamma, and tumor necrosis factor-alpha) affect endothelial cell metabolism and susceptibility to BTV infection. Concurrent alterations in major histocompatibility complex (MHC) antigen expression were also examined. BTV infection suppressed target cell mitochondrial function and DNA synthesis and enhanced MHC class I expression. Interferon-gamma and tumor necrosis factor alpha suppressed viral antigen expression and were synergistic early in the infection. Interferon gamma enhanced MHC class I and induced MHC class II antigen expression in both BTV infected and uninfected endothelial cells. The other cytokines had minimal effect on endothelial cell surface antigen expression, although interleukin-1 (IL-1) did inhibit cell growth. Infected endothelial cell cultures produced interferon at 20 hours and 40 hours after infection. Electron microscopic analysis confirmed previous findings in other cell lines regarding BTV morphogenesis in endothelial cells, the putative target cell population in vivo.
Collapse
Affiliation(s)
- M L Coen
- Department of Veterinary Sciences, University of Wyoming, Laramie
| | | | | | | |
Collapse
|
15
|
Goodwin RH. Replacement of vertebrate serum with lipids and other factors in the culture of invertebrate cells, tissues, parasites, and pathogens. IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY : JOURNAL OF THE TISSUE CULTURE ASSOCIATION 1991; 27A:470-8. [PMID: 1869488 DOI: 10.1007/bf02631147] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Culture medium supplementation with vertebrate serum results in the selection of fibroblastoid insect cell lines and a general decline during continuous subculturing of both morphologic and functional differentiation of the surviving cells. Essential lipid mixtures can substitute for vertebrate serum in the culture of insect and some vertebrate cells, tissues, parasites, and pathogens. The provision of sterols and essential (with nonessential) polyunsaturated fatty acids as phospholipids in oxidation-protected peptoliposomes or proteoliposomes allows cells in culture to duplicate in vivo specific membranes more accurately. Such lipid-corrected membranes allow cultured cells to communicate with neighboring cells through the extracellular matrix, effectively transmit hormonal signals directly and via receptor control, and respond with various tissue-specific functions and differentiation states as directed.
Collapse
Affiliation(s)
- R H Goodwin
- USDA/ARS, Montana State University, Bozeman 59717
| |
Collapse
|
16
|
Martyn JC, Gould AR, Eaton BT. High level expression of the major core protein VP7 and the non-structural protein NS3 of bluetongue virus in yeast: use of expressed VP7 as a diagnostic, group-reactive antigen in a blocking ELISA. Virus Res 1991; 18:165-78. [PMID: 1645903 DOI: 10.1016/0168-1702(91)90016-o] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The major core protein VP7 and a non-structural protein NS3 of bluetongue virus serotype 1 have been synthesized from recombinant plasmids using both an in vitro transcription/translation system and a yeast expression system. Bluetongue virus genes were transcribed under the control of the bacteriophage SP6 promoter and the regulatable yeast metallothionein promoter. An indirect ELISA showed that expression of NS3 in yeast was inducible with 1 mM CuSO4 and VP7 synthesis was constitutive but could be further induced. The preferred procedure for antigen extraction from yeast was sonication for VP7 and SDS/NaOH treatment for NS3. Yeast-expressed VP7 antigen and a monoclonal antibody were used in a blocking ELISA to distinguish sera raised against bluetongue virus serotypes from those generated to viruses of the epizootic haemorrhagic disease serogroup.
Collapse
Affiliation(s)
- J C Martyn
- C.S.I.R.O., Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | | | | |
Collapse
|
17
|
Abstract
Whole mounts of intact virus-infected cells have been used for several decades to examine virus-cell relationships and virus structure. The general concept of studying virus structure in association with the host cell has recently been expanded to reveal interactions between viruses and the cytoskeleton. The procedure permits utilization of immuno-gold protocols using both the transmission and scanning electron microscopes. The grid-cell-culture technique is reviewed to explain how it can be exploited to provide valuable information about virus structure and replication in both diagnostic and research laboratories. The use of the technique at the research level is discussed using bluetongue virus as a model. The procedure can provide basic structural information about intact virions and additional data on the intracellular location of viruses and virus-specific structures and about the mode of virus release from infected cells. Application of immunoelectron microscopy reveals information on the protein composition of not only released virus particles but also cell surface and cytoskeletal-associated viruses and virus-specific structures. Collectively, this simple and physically gentle technique has provided information which would otherwise be difficult to obtain.
Collapse
Affiliation(s)
- A D Hyatt
- Commonwealth Scientific and Industrial Research Organisation, Australian Animal Health Laboratory, Victoria
| | | |
Collapse
|