1
|
Shaikh K, Bowman M, McCormick SM, Gao L, Zhang J, White J, Tawil J, Kapoor A, Arav-Boger R, Norbury CC, Harhaj EW. ZFAND6 promotes TRAF2-dependent mitophagy to restrain cGAS-STING signaling. iScience 2025; 28:111544. [PMID: 39811672 PMCID: PMC11731517 DOI: 10.1016/j.isci.2024.111544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/23/2024] [Accepted: 12/03/2024] [Indexed: 01/16/2025] Open
Abstract
ZFAND6 is a zinc finger protein that interacts with TNF receptor-associated factor 2 (TRAF2) and polyubiquitin chains and has been linked to tumor necrosis factor (TNF) signaling. Here, we report a previously undescribed function of ZFAND6 in maintaining mitochondrial homeostasis by promoting mitophagy. Deletion of ZFAND6 in bone marrow-derived macrophages (BMDMs) upregulates reactive oxygen species (ROS) and the accumulation of damaged mitochondria due to impaired mitophagy. Consequently, mitochondrial DNA (mtDNA) is released into the cytoplasm, triggering the spontaneous expression of interferon-stimulated genes (ISGs) in a stimulator of interferon genes (STING) dependent manner, which leads to enhanced viral resistance. Mechanistically, ZFAND6 bridges a TRAF2-cIAP1 interaction and mediates the recruitment of TRAF2 to damaged mitochondria, which is required for the initiation of ubiquitin-dependent mitophagy. Our results suggest that ZFAND6 promotes the interactions of TRAF2 and cIAP1 and the clearance of damaged mitochondria by mitophagy to maintain mitochondrial homeostasis.
Collapse
Affiliation(s)
- Kashif Shaikh
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Melissa Bowman
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Sarah M. McCormick
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Linlin Gao
- Department of Microbiology and Immunology, The University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Jiawen Zhang
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Jesse White
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, PA 17033, USA
| | - John Tawil
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Arun Kapoor
- Department of Pediatrics, Division of Infectious Diseases, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Ravit Arav-Boger
- Department of Pediatrics, Division of Infectious Diseases, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Christopher C. Norbury
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Edward W. Harhaj
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
2
|
Liu P, Wang Y, Duan L. ZFAND5 Is an Independent Prognostic Biomarker of Perihilar Cholangiocarcinoma. Front Oncol 2022; 12:955670. [PMID: 35912230 PMCID: PMC9326020 DOI: 10.3389/fonc.2022.955670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundCholangiocarcinoma (CCA) is a highly aggressive malignancy with extremely poor prognosis. Perihilar CCA (pCCA) is the most common subtype of CCA, but its biomarker study is much more lagged behind other subtypes. ZFAND5 protein can interact with ubiquitinated proteins and promote protein degradation. However, the function of ZFAND5 in cancer progression is rarely investigated, and the role of ZFAND5 in pCCA is never yielded.Materials and MethodsIn this study, we established a pCCA cohort consisting of 72 patients. The expression of ZFAND5 in pCCAs, and the paired liver tissues, intrahepatic bile duct tissues and common bile ducts (CBD) tissues were detected with IHC. ZFAND5 mRNA in pCCAs and CBDs was detected with qRT-PCR. The pCCA cohort was divided into ZFAND5low and ZFAND5high subsets according to the IHC score. The correlations between ZFAND5 expression and clinicopathological parameters were assessed bychi-square test. The prognostic significance of ZFAND5 expression and clinicopathological parameters was estimated by univariate analysis with Kaplan-Meier method, and by multivariate analysis with Cox-regression model.ResultsExpression of ZFAND5 in pCCAs was substantially higher than that in interlobular bile ducts and common bile ducts, but lower than that in liver tissues. The ZFAND5low and ZFAND5high subsets accounted for 44.4% and 55.6% of all pCCAs respectively. ZFAND5 high patients had much lower survival rates than the ZFAND5low patients, with the average survival time as 31.2 months and 19.5 months respectively. ZFAND5 was identified as an independent unfavorable prognostic biomarker of pCCA with multivariate analysis.ConclusionZFAND5 expression was up-regulated in pCCAs compared with the CBDs. We identified ZFAND5 as an independent biomarker of pCCA, which could provide more evidence for the molecular classification of pCCA, and help stratify the high-risk patients based on the molecular features.
Collapse
Affiliation(s)
- Pei Liu
- Department of Plastic Surgery, Qilu Hospital Affiliated to Shandong University, Jinan, China
| | - Yijia Wang
- Department of Plastic Surgery, Qilu Hospital Affiliated to Shandong University, Jinan, China
| | - Lingling Duan
- Department of Health Care, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
- *Correspondence: Lingling Duan, ;
| |
Collapse
|
3
|
Okumoto K, Miyata N, Fujiki Y. Identification of Peroxisomal Protein Complexes with PTS Receptors, Pex5 and Pex7, in Mammalian Cells. Subcell Biochem 2019; 89:287-298. [PMID: 30378028 DOI: 10.1007/978-981-13-2233-4_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
Pex5 and Pex7 are cytosolic receptors for peroxisome targeting signal type-1 (PTS1) and type-2 (PTS2), respectively, and play a pivotal role in import of peroxisomal matrix proteins. Recent advance in mass spectrometry analysis has facilitated comprehensive analysis of protein-protein interaction network by a combination with immunoprecipitation or biochemical purification. In this chapter, we introduce several findings obtained by these methods applied to mammalian cells. Exploring Pex5-binding partners in mammalian cells revealed core components comprising the import machinery complex of matrix proteins and a number of PTS1-type cargo proteins. Biochemical purification of the Pex5-export stimulating factor from rat liver cytosol fraction identified Awp1, providing further insight into molecular mechanisms of the export step of mono-ubiquitinated Pex5. Identification of DDB1 (damage-specific DNA-binding protein 1), a component of CRL4 (Cullin4A-RING ubiquitin ligase) E3 complex, as a Pex7-interacting protein revealed that quality control of Pex7 by CRL4A is important for PTS2 protein import by preventing the accumulation of dysfunctional Pex7. Furthermore, analysis of binding partners of an intraperoxisomal processing enzyme, trypsin-domain containing 1 (Tysnd1), showed a protein network regulating peroxisomal fatty acid β-oxidation.
Collapse
Affiliation(s)
- Kanji Okumoto
- Department of Biology, Faculty of Sciences, Kyushu University, Nishi-ku, Fukuoka, 819-0395, Japan.,Graduate School of Systems Life Sciences, Kyushu University, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Non Miyata
- Department of Biology, Faculty of Sciences, Kyushu University, Nishi-ku, Fukuoka, 819-0395, Japan.,Department of Chemistry, Faculty of Sciences, Kyushu University, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Yukio Fujiki
- Medical Institute of Bioregulation, Kyushu University, Higashi-ku, Fukuoka, 812-8582, Japan.
| |
Collapse
|
4
|
Li X, Weintraub DS, Fulton DJR. Beyond Impressions: How Altered Shear Stress Connects Hypoxic Signaling to Endothelial Inflammation. Arterioscler Thromb Vasc Biol 2019; 37:1987-1989. [PMID: 29070537 DOI: 10.1161/atvbaha.117.310149] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Xueyi Li
- From the Vascular Biology Center, Medical College of Georgia, Augusta University
| | - Daniel S Weintraub
- From the Vascular Biology Center, Medical College of Georgia, Augusta University
| | - David J R Fulton
- From the Vascular Biology Center, Medical College of Georgia, Augusta University.
| |
Collapse
|
5
|
Elevated pre-activation basal level of nuclear NF-κB in native macrophages accelerates LPS-induced translocation of cytosolic NF-κB into the cell nucleus. Sci Rep 2019; 9:4563. [PMID: 30872589 PMCID: PMC6418260 DOI: 10.1038/s41598-018-36052-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 11/08/2018] [Indexed: 02/01/2023] Open
Abstract
Signaling via Toll-like receptor 4 (TLR4) in macrophages constitutes an essential part of the innate immune response to bacterial infections. Detailed and quantified descriptions of TLR4 signal transduction would help to understand and exploit the first-line response of innate immune defense. To date, most mathematical modelling studies were performed on transformed cell lines. However, properties of primary macrophages differ significantly. We therefore studied TLR4-dependent activation of NF-κB transcription factor in bone marrow-derived and peritoneal primary macrophages. We demonstrate that the kinetics of NF-κB phosphorylation and nuclear translocation induced by a wide range of bacterial lipopolysaccharide (LPS) concentrations in primary macrophages is much faster than previously reported for macrophage cell lines. We used a comprehensive combination of experiments and mathematical modeling to understand the mechanisms of this rapid response. We found that elevated basal NF-κB in the nuclei of primary macrophages is a mechanism increasing native macrophage sensitivity and response speed to the infection. Such pre-activated state of macrophages accelerates the NF-κB translocation kinetics in response to low agonist concentrations. These findings enabled us to refine and construct a new model combining both NF-κB phosphorylation and translocation processes and predict the existence of a negative feedback loop inactivating phosphorylated NF-κB.
Collapse
|
6
|
Zhang R, Xu L, Zhang D, Hu B, Luo Q, Han D, Li J, Shen C. Cardioprotection of Ginkgolide B on Myocardial Ischemia/Reperfusion-Induced Inflammatory Injury via Regulation of A20-NF-κB Pathway. Front Immunol 2018; 9:2844. [PMID: 30619251 PMCID: PMC6299132 DOI: 10.3389/fimmu.2018.02844] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 11/19/2018] [Indexed: 12/26/2022] Open
Abstract
Inflammation urges most of the characteristics of plaques involved in the pathogenesis of myocardial ischemia/reperfusion injury (MI/RI). In addition, inflammatory signaling pathways not only mediate the properties of plaques that precipitate ischemia/reperfusion (I/R) but also influence the clinical consequences of the post-infarction remodeling and heart failure. Here, we studied whether Ginkgolide B (GB), an effective anti-inflammatory monomer, improved MI/RI via suppression of inflammation. Left anterior descending (LAD) coronary artery induced ischemia/reperfusion (I/R) of rats or A20 silencing mice, as well as hypoxia/reoxygenation (H/R) induced damages of primary cultured rat neonatal ventricular myocytes or A20 silencing ventricular myocytes, respectively, served as MI/RI model in vivo and in vitro to discuss the anti-I/R injury properties of GB. We found that GB significantly alleviated the symptoms of MI/RI evidently by reducing infarct size, preventing ultrastructural changes of myocardium, depressing Polymorphonuclears (PMNs) infiltration, lessening histopathological damage and suppressing the excessive inflammation. Further study demonstrated that GB remarkably inhibited NF-κB p65 subunit translocation, IκB-α phosphorylation, IKK-β activity, as well as the downstream inflammatory cytokines and proteins expressions via zinc finger protein A20. In conclusion, GB could alleviate MI/RI-induced inflammatory response through A20-NF-κB signal pathway, which may give us new insights into the preventive strategies for MI/RI disease.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Lin Xu
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Dong Zhang
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Bo Hu
- Minimally Invasive Urology Center, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Qi Luo
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Dan Han
- Department of Pharmacy, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Jiangbing Li
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Chengwu Shen
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| |
Collapse
|
7
|
Agathangelidis A, Xochelli A, Stamatopoulos K. A gene is known by the company it keeps: enrichment of TNFAIP3 gene aberrations in MALT lymphomas expressing IGHV4-34 antigen receptors. J Pathol 2017; 243:403-406. [PMID: 28892161 DOI: 10.1002/path.4982] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 08/29/2017] [Accepted: 09/06/2017] [Indexed: 12/17/2022]
Abstract
Associations between immunoglobulin (IG) receptors with distinctive immunogenetic features and particular gene mutations are a recurring theme in mature B-cell lymphomas. Relevant observations have been made in chronic lymphocytic leukemia (CLL), where gene mutations are distributed asymmetrically in cases bearing or not somatic hypermutations within the clonotypic immunoglobulin heavy chain variable region (IGHV) genes (e.g. TP53 mutations predominate in IG-unmutated CLL, whereas the opposite is seen for MYD88 mutations, enriched in IG-mutated CLL) and in subsets of cases with stereotyped IG (enrichment for SF3B1 mutations in CLL subset #2). Moreover, similar findings have been reported in splenic marginal-zone lymphoma, where KLF2 mutations are biased to cases expressing IGHV1-2*04 IG receptors, and in hairy cell leukemia, where IGHV4-34-expressing cases display a low frequency of BRAF mutations but a high frequency of MAP2K1 mutations. The list is now growing with the report of increased frequency of inactivating mutations in the TNFAIP3 gene in MALT lymphomas expressing IG receptors encoded by the IGHV4-34 gene, particularly of the ocular adnexa. Considering that TNFAIP3 encodes a negative regulator of NF-κB, this finding further highlights the importance of NF-κB pathway activation in the natural history of MALT lymphomas. Altogether, these findings allude to selection of genomic aberrations in lymphoma cases with distinctive immune signaling profiles linked to the expression of particular IG receptors. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Andreas Agathangelidis
- Institute of Applied Biosciences, CERTH, The Centre for Research and Technology Hellas, Thessaloniki, Greece
| | - Aliki Xochelli
- Institute of Applied Biosciences, CERTH, The Centre for Research and Technology Hellas, Thessaloniki, Greece
| | - Kostas Stamatopoulos
- Institute of Applied Biosciences, CERTH, The Centre for Research and Technology Hellas, Thessaloniki, Greece
| |
Collapse
|
8
|
Sianipar IR, Matsui C, Minami N, Gan X, Deng L, Hotta H, Shoji I. Physical and functional interaction between hepatitis C virus NS5A protein and ovarian tumor protein deubiquitinase 7B. Microbiol Immunol 2016; 59:466-76. [PMID: 26112491 DOI: 10.1111/1348-0421.12278] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 06/22/2015] [Accepted: 06/22/2015] [Indexed: 12/24/2022]
Abstract
Hepatitis C virus (HCV) NS5A protein plays crucial roles in viral RNA replication, virus assembly, and viral pathogenesis. Although NS5A has no known enzymatic activity, it modulates various cellular pathways through interaction with cellular proteins. HCV NS5A (and other HCV proteins) are reportedly degraded through the ubiquitin-proteasome pathway; however, the physiological roles of ubiquitylation and deubiquitylation in HCV infection are largely unknown. To elucidate the role of deubiquitylation in HCV infection, an attempt was made to identify a deubiquitinase (DUB) that can interact with NS5A protein. An ovarian tumor protein (OTU), deubiquitinase 7B (OTUD7B), was identified as a novel NS5A-binding protein. Co-immunoprecipitation analyses showed that NS5A interacts with OTUD7B in both Huh-7 and HCV RNA replicon cells. Immunofluorescence staining revealed that HCV NS5A protein colocalizes with OTUD7B in the cytoplasm. Moreover, HCV infection was found to enhance the nuclear localization of OTUD7B. The OTUD7B-binding domain on NS5A was mapped using a series of NS5A deletion mutants. The present findings suggest that the domain I of NS5A is important and the region from amino acid 121 to 126 of NS5A essential for the interaction. Either V121A or V124A mutation in NS5A disrupts the NS5A-OTUD7B interaction. The results of this in vivo ubiquitylation assay suggest that HCV NS5A enhances OTUD7B DUB activity. Taken together, these results suggest that HCV NS5A protein interacts with OTUD7B, thereby modulating its DUB activity.
Collapse
Affiliation(s)
- Imelda Rosalyn Sianipar
- Division of Microbiology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan.,Department of Physiology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Chieko Matsui
- Division of Microbiology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Nanae Minami
- Division of Microbiology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Xiang Gan
- Institute of Biochemistry and Molecular Biology, Hubei University, Wuhan, China
| | - Lin Deng
- Division of Microbiology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Hak Hotta
- Division of Microbiology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Ikuo Shoji
- Division of Microbiology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| |
Collapse
|
9
|
Devarie-Baez NO, Silva Lopez EI, Furdui CM. Biological chemistry and functionality of protein sulfenic acids and related thiol modifications. Free Radic Res 2015; 50:172-94. [PMID: 26340608 DOI: 10.3109/10715762.2015.1090571] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Selective modification of proteins at cysteine residues by reactive oxygen, nitrogen or sulfur species formed under physiological and pathological states is emerging as a critical regulator of protein activity impacting cellular function. This review focuses primarily on protein sulfenylation (-SOH), a metastable reversible modification connecting reduced cysteine thiols to many products of cysteine oxidation. An overview is first provided on the chemistry principles underlining synthesis, stability and reactivity of sulfenic acids in model compounds and proteins, followed by a brief description of analytical methods currently employed to characterize these oxidative species. The following chapters present a selection of redox-regulated proteins for which the -SOH formation was experimentally confirmed and linked to protein function. These chapters are organized based on the participation of these proteins in the regulation of signaling, metabolism and epigenetics. The last chapter discusses the therapeutic implications of altered redox microenvironment and protein oxidation in disease.
Collapse
Affiliation(s)
- Nelmi O Devarie-Baez
- a Department of Internal Medicine, Section on Molecular Medicine , Wake Forest School of Medicine , Winston-Salem , NC , USA
| | - Elsa I Silva Lopez
- a Department of Internal Medicine, Section on Molecular Medicine , Wake Forest School of Medicine , Winston-Salem , NC , USA
| | - Cristina M Furdui
- a Department of Internal Medicine, Section on Molecular Medicine , Wake Forest School of Medicine , Winston-Salem , NC , USA
| |
Collapse
|
10
|
Magraoui FE, Reidick C, Meyer HE, Platta HW. Autophagy-Related Deubiquitinating Enzymes Involved in Health and Disease. Cells 2015; 4:596-621. [PMID: 26445063 PMCID: PMC4695848 DOI: 10.3390/cells4040596] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 09/15/2015] [Accepted: 09/30/2015] [Indexed: 02/06/2023] Open
Abstract
Autophagy is an evolutionarily-conserved process that delivers diverse cytoplasmic components to the lysosomal compartment for either recycling or degradation. This involves the removal of protein aggregates, the turnover of organelles, as well as the elimination of intracellular pathogens. In this situation, when only specific cargoes should be targeted to the lysosome, the potential targets can be selectively marked by the attachment of ubiquitin in order to be recognized by autophagy-receptors. Ubiquitination plays a central role in this process, because it regulates early signaling events during the induction of autophagy and is also used as a degradation-tag on the potential autophagic cargo protein. Here, we review how the ubiquitin-dependent steps of autophagy are balanced or counteracted by deubiquitination events. Moreover, we highlight the functional role of the corresponding deubiquitinating enzymes and discuss how they might be involved in the occurrence of cancer, neurodegenerative diseases or infection with pathogenic bacteria.
Collapse
Affiliation(s)
- Fouzi El Magraoui
- Biomedizinische Forschung, Human Brain Proteomics II, Leibniz-Institut für Analytische Wissenschaften - ISAS -e.V. 44139 Dortmund, Germany.
| | - Christina Reidick
- Biochemie Intrazellulärer Transportprozesse, Ruhr-Universität Bochum, 44801 Bochum, Germany.
| | - Hemut E Meyer
- Biomedizinische Forschung, Human Brain Proteomics II, Leibniz-Institut für Analytische Wissenschaften - ISAS -e.V. 44139 Dortmund, Germany.
| | - Harald W Platta
- Biochemie Intrazellulärer Transportprozesse, Ruhr-Universität Bochum, 44801 Bochum, Germany.
| |
Collapse
|
11
|
Abbasi A, Forsberg K, Bischof F. The role of the ubiquitin-editing enzyme A20 in diseases of the central nervous system and other pathological processes. Front Mol Neurosci 2015; 8:21. [PMID: 26124703 PMCID: PMC4466442 DOI: 10.3389/fnmol.2015.00021] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 05/24/2015] [Indexed: 11/28/2022] Open
Abstract
In recent years, the ubiquitin-editing enzyme A20 has been shown to control a large set of molecular pathways involved in the regulation of protective as well as self-directed immune responses. Here, we assess the current and putative roles of A20 in inflammatory, vascular and degenerative diseases of the central nervous system and explore future directions of research.
Collapse
Affiliation(s)
- Asghar Abbasi
- Department of Neuroimmunology, Hertie Institute for Clinical Brain Research and Center of Neurology, University Hospital Tübingen Tübingen, Germany
| | - Kirsi Forsberg
- Department of Neuroimmunology, Hertie Institute for Clinical Brain Research and Center of Neurology, University Hospital Tübingen Tübingen, Germany
| | - Felix Bischof
- Department of Neuroimmunology, Hertie Institute for Clinical Brain Research and Center of Neurology, University Hospital Tübingen Tübingen, Germany
| |
Collapse
|
12
|
Zhang X, Wang Y. Cell cycle regulation of VCIP135 deubiquitinase activity and function in p97/p47-mediated Golgi reassembly. Mol Biol Cell 2015; 26:2242-51. [PMID: 25904330 PMCID: PMC4462942 DOI: 10.1091/mbc.e15-01-0041] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 04/14/2015] [Indexed: 11/11/2022] Open
Abstract
In mammalian cells, the inheritance of the Golgi apparatus into the daughter cells during each cycle of cell division is mediated by a disassembly and reassembly process, and this process is precisely controlled by phosphorylation and ubiquitination. VCIP135 (valosin-containing protein p97/p47 complex-interacting protein, p135), a deubiquitinating enzyme required for p97/p47-mediated postmitotic Golgi membrane fusion, is phosphorylated at multiple sites during mitosis. However, whether phosphorylation directly regulates VCIP135 deubiquitinase activity and Golgi membrane fusion in the cell cycle remains unknown. We show that, in early mitosis, phosphorylation of VCIP135 by Cdk1 at a single residue, S130, is sufficient to inactivate the enzyme and inhibit p97/p47-mediated Golgi membrane fusion. At the end of mitosis, VCIP135 S130 is dephosphorylated, which is accompanied by the recovery of its deubiquitinase activity and Golgi reassembly. Our results demonstrate that phosphorylation and ubiquitination are coordinated via VCIP135 to control Golgi membrane dynamics in the cell cycle.
Collapse
Affiliation(s)
- Xiaoyan Zhang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1048
| | - Yanzhuang Wang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1048
| |
Collapse
|