1
|
Lall D, Lorenzini I, Mota TA, Bell S, Mahan TE, Ulrich JD, Davtyan H, Rexach JE, Muhammad AKMG, Shelest O, Landeros J, Vazquez M, Kim J, Ghaffari L, O'Rourke JG, Geschwind DH, Blurton-Jones M, Holtzman DM, Sattler R, Baloh RH. C9orf72 deficiency promotes microglial-mediated synaptic loss in aging and amyloid accumulation. Neuron 2021; 109:2275-2291.e8. [PMID: 34133945 DOI: 10.1016/j.neuron.2021.05.020] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 02/13/2021] [Accepted: 05/17/2021] [Indexed: 12/13/2022]
Abstract
C9orf72 repeat expansions cause inherited amyotrophic lateral sclerosis (ALS)/frontotemporal dementia (FTD) and result in both loss of C9orf72 protein expression and production of potentially toxic RNA and dipeptide repeat proteins. In addition to ALS/FTD, C9orf72 repeat expansions have been reported in a broad array of neurodegenerative syndromes, including Alzheimer's disease. Here we show that C9orf72 deficiency promotes a change in the homeostatic signature in microglia and a transition to an inflammatory state characterized by an enhanced type I IFN signature. Furthermore, C9orf72-depleted microglia trigger age-dependent neuronal defects, in particular enhanced cortical synaptic pruning, leading to altered learning and memory behaviors in mice. Interestingly, C9orf72-deficient microglia promote enhanced synapse loss and neuronal deficits in a mouse model of amyloid accumulation while paradoxically improving plaque clearance. These findings suggest that altered microglial function due to decreased C9orf72 expression directly contributes to neurodegeneration in repeat expansion carriers independent of gain-of-function toxicities.
Collapse
Affiliation(s)
- Deepti Lall
- Center for Neural Science and Medicine, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA; Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA
| | - Ileana Lorenzini
- Department of Neurobiology, Barrow Neurological Institute, 350 W. Thomas Road, Phoenix, AZ 85013, USA
| | - Thomas A Mota
- Center for Neural Science and Medicine, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA; Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA
| | - Shaughn Bell
- Center for Neural Science and Medicine, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA; Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA
| | - Thomas E Mahan
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Jason D Ulrich
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Hayk Davtyan
- Institute for Memory Impairments and Neurological Disorders, Sue & Bill Gross Stem Cell Research Center, 3200 Gross Hall, 845 Health Sciences Road, University of California, Irvine, Irvine, CA 92697, USA
| | - Jessica E Rexach
- Program in Neurogenetics, Department of Neurology, Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - A K M Ghulam Muhammad
- Center for Neural Science and Medicine, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA; Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA
| | - Oksana Shelest
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA
| | - Jesse Landeros
- Center for Neural Science and Medicine, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA; Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA
| | - Michael Vazquez
- Center for Neural Science and Medicine, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA; Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA
| | - Junwon Kim
- Department of Neurobiology, Barrow Neurological Institute, 350 W. Thomas Road, Phoenix, AZ 85013, USA
| | - Layla Ghaffari
- Department of Neurobiology, Barrow Neurological Institute, 350 W. Thomas Road, Phoenix, AZ 85013, USA
| | - Jacqueline Gire O'Rourke
- Center for Neural Science and Medicine, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA; Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA
| | - Daniel H Geschwind
- Program in Neurogenetics, Department of Neurology, Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Mathew Blurton-Jones
- Institute for Memory Impairments and Neurological Disorders, Sue & Bill Gross Stem Cell Research Center, 3200 Gross Hall, 845 Health Sciences Road, University of California, Irvine, Irvine, CA 92697, USA
| | - David M Holtzman
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Rita Sattler
- Department of Neurobiology, Barrow Neurological Institute, 350 W. Thomas Road, Phoenix, AZ 85013, USA.
| | - Robert H Baloh
- Center for Neural Science and Medicine, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA; Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA; Department of Neurology, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA.
| |
Collapse
|
2
|
Abstract
Compared with conventional vaccines, the main advantage of DNA vaccine-based methods is its continued expression of the plasmid-encoded antigens followed by the induction of subsequent humoral and cellular immunities. DNA vaccines are currently used in animal models, but limited success has been obtained for use in clinical applications due to their poor immunogenicity. Various strategies are attempted to improve the induced immune response of DNA vaccines. It has been demonstrated that co-administration of molecular adjuvants with DNA vaccines is a promising approach to effectively elicit protective immunity by increasing the transfection efficiency of DNA vaccines. Genetic adjuvants are incorporated to promote activation of the transfected local antigen-presenting cells (APCs) and immune cells in the draining lymph node and polarization of T-cell subsets to decrease T-cell tolerance to the specific antigen. Here we provide an overview of different types of genetic adjuvants. The aim of the current chapter is to present a framework for the construction of a gene-based vaccine and adjuvant. Moreover, we describe the application of DNA vaccines co-administered with different types of genetic adjuvants and the methods to evaluate their potency in the mouse models.
Collapse
|
3
|
Joly-Amado A, Davtyan H, Serraneau K, Jules P, Zitnyar A, Pressman E, Zagorski K, Antonyan T, Hovakimyan A, Paek HJ, Gordon MN, Cribbs DH, Petrovsky N, Agadjanyan MG, Ghochikyan A, Morgan D. Active immunization with tau epitope in a mouse model of tauopathy induced strong antibody response together with improvement in short memory and pSer396-tau pathology. Neurobiol Dis 2019; 134:104636. [PMID: 31629891 DOI: 10.1016/j.nbd.2019.104636] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/30/2019] [Accepted: 10/07/2019] [Indexed: 12/16/2022] Open
Abstract
Abnormal tau hyperphosphorylation and its aggregation into neurofibrillary tangles are a hallmark of tauopathies, neurodegenerative disorders that include Alzheimer's disease (AD). Active and passive Tau-immunotherapy has been proposed as a therapeutic approach to AD with mixed results. One of the limitations of active immunotherapy may be associated with the mediocre immunogenicity of vaccines that are not inducing therapeutically potent titers of antibodies. The aim of this study was to test the efficacy of an anti-tau vaccine, AV-1980R/A composed of N terminal peptide of this molecule fused with an immunogenic MultiTEP platform and formulated in a strong adjuvant, AdvaxCpG in a Tg4510 mouse model of tauopathy. Experimental mice were immunized with AV-1980R/A and a control group of mice were injected with adjuvant only. Nontransgenic and tetracycline transactivator (tTA) transgenic littermates were included as baseline controls to contrast with the tau phenotype. Active immunization with AV-1980R/A induced very strong anti-tau humoral immune responses in both nontransgenic and transgenic mice with evidence of IgG in brains of AV-1980R/A vaccinated mice. These experimental animals displayed an improvement in short-term memory during a novel object recognition test. However, impairments in other behavioral tasks were not prevented by AV-1980R/A vaccinations. At the same time, high titers of anti-tau antibodies reduced hyperphosphorylated pSer396 tau but did not lower the level of other phosphorylated tau species in the brains of AV-1980R/A vaccinated mice. These data indicate that active immunotherapy with an N-terminal Tau epitope was only partially effective in improving cognition and reducing pathology in the stringent Tg4510 mouse model of tauopathy.
Collapse
Affiliation(s)
- A Joly-Amado
- USF Health Byrd Alzheimer's Institute, Tampa, FL 33613, USA.
| | - H Davtyan
- The Institute for Molecular Medicine, Huntington Beach, CA 92647, USA; Institute for Memory Impairments and Neurological Disorders, University of California Irvine, Irvine, CA 92697, USA
| | - K Serraneau
- USF Health Byrd Alzheimer's Institute, Tampa, FL 33613, USA
| | - P Jules
- USF Health Byrd Alzheimer's Institute, Tampa, FL 33613, USA
| | - A Zitnyar
- USF Health Byrd Alzheimer's Institute, Tampa, FL 33613, USA
| | - E Pressman
- USF Health Byrd Alzheimer's Institute, Tampa, FL 33613, USA
| | - K Zagorski
- The Institute for Molecular Medicine, Huntington Beach, CA 92647, USA
| | - T Antonyan
- The Institute for Molecular Medicine, Huntington Beach, CA 92647, USA
| | - A Hovakimyan
- The Institute for Molecular Medicine, Huntington Beach, CA 92647, USA
| | - H J Paek
- Molecular Pharmacology and Physiology, College of Medicine, University of South Florida, Tampa, FL, USA
| | - M N Gordon
- USF Health Byrd Alzheimer's Institute, Tampa, FL 33613, USA
| | - D H Cribbs
- Institute for Memory Impairments and Neurological Disorders, University of California Irvine, Irvine, CA 92697, USA
| | - N Petrovsky
- Flinders Med. Ctr., Bedford Park, Adelaide 5042, Australia
| | - M G Agadjanyan
- The Institute for Molecular Medicine, Huntington Beach, CA 92647, USA
| | - A Ghochikyan
- The Institute for Molecular Medicine, Huntington Beach, CA 92647, USA
| | - D Morgan
- USF Health Byrd Alzheimer's Institute, Tampa, FL 33613, USA
| |
Collapse
|
4
|
Carrera I, Vigo C, Cacabelos R. A Vaccine Kit for Prevention and Therapy of Alzheimer’s Disease in a Transgenic Mouse Model. JOURNAL OF EXPLORATORY RESEARCH IN PHARMACOLOGY 2018; 3:12-18. [DOI: 10.14218/jerp.2018.00004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
5
|
Behrendt I, Prądzińska M, Spodzieja M, Czaplewska P, Kołodziejczyk AS, Szymańska A, Kasprzykowski F, Lundström SL, Zubarev RA, Rodziewicz-Motowidło S. Identification and characterization of antibodies elicited by human cystatin C fragment. J Mol Recognit 2017; 31. [PMID: 29205549 DOI: 10.1002/jmr.2689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 10/23/2017] [Accepted: 10/28/2017] [Indexed: 11/11/2022]
Abstract
Amyloid formation is associated with a number of neurodegenerative diseases that affect the independence and quality of life of aging populations. One of rather atypical, occurring at a young age amyloidosis is hereditary cystatin C amyloid angiopathy (HCCAA) related to aggregation of L68Q variant of human cystatin C (hCC). Human cystatin C plays a very important role in many aspects of human health; however, its amyloidogenic properties manifested in HCCAA present a real, lethal threat to some populations and any work on factors that can affect possible influencing hCC aggregation is not to overestimate. It was proved that interaction of hCC with monoclonal antibodies suppresses significantly hCC dimerization process. Therefore, immunotherapy seems to be the right approach toward possible HCCAA treatment. In this work, the hCC fragment encompassing residue 60-70 (in 2 variants: linear peptide and multiple antigenic peptide) was used as an immunogen in rabbit immunization. As a result, specific anti-hCC antibodies were found in both rabbit sera. Surprisingly, rabbit antibodies were obtained after immunization with only a short peptide. The obtained antibodies were characterized, and their influence on the aggregation propensity of the hCC molecules was evaluated. The antibodies turned out not to have any significant influence on the cystatin C dimerization process. Nevertheless, we hope that antibodies elicited in rabbits by other hCC fragments could lead to elaboration of effective treatment against HCCAA.
Collapse
Affiliation(s)
| | | | | | - Paulina Czaplewska
- Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | | | | | | | - Susanna L Lundström
- Department of Medical Biochemistry and Biophysics, Division of Physiological Chemistry, Karolinska Institutet, Stockholm, Sweden
| | - Roman A Zubarev
- Department of Medical Biochemistry and Biophysics, Division of Physiological Chemistry, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
6
|
Prądzińska M, Behrendt I, Astorga-Wells J, Manoilov A, Zubarev RA, Kołodziejczyk AS, Rodziewicz-Motowidło S, Czaplewska P. Application of amide hydrogen/deuterium exchange mass spectrometry for epitope mapping in human cystatin C. Amino Acids 2016; 48:2809-2820. [PMID: 27573935 PMCID: PMC5107209 DOI: 10.1007/s00726-016-2316-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 08/16/2016] [Indexed: 12/01/2022]
Abstract
Human cystatin C (hCC) is a small cysteine protease inhibitor whose oligomerization by propagated domain swapping is linked to certain neurological disorders. One of the ways to prevent hCC dimerization and fibrillogenesis is to enable its interaction with a proper antibody. Herein, the sites of interaction of hCC with dimer-preventing mouse monoclonal anti-hCC antibodies Cyst28 are studied and compared with the binding sites found for mAb Cyst10 that has almost no effect on hCC dimerization. In addition, hCC epitopes in complexes with native polyclonal antibodies extracted from human serum were studied. The results obtained with hydrogen-deuterium exchange mass spectrometry (HDX MS) were compared with the previous findings made using the excision/extraction MS approach. The main results from the two complementary MS-based approaches are found to be in agreement with each other, with some differences being attributed to the specificity of each method. The findings of the current studies may be important for future design of hCC dimerization inhibitors.
Collapse
Affiliation(s)
- Martyna Prądzińska
- Faculty of Chemistry, Department of Biomedical Chemistry, University of Gdańsk, Wita Stwosza 63, 80-952, Gdańsk, Poland
| | - Izabela Behrendt
- Faculty of Chemistry, Department of Biomedical Chemistry, University of Gdańsk, Wita Stwosza 63, 80-952, Gdańsk, Poland
| | - Juan Astorga-Wells
- Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Scheeles väg 2, S-171 77, Stockholm, Sweden
- Biomotif AB, 18212, Stockholm, Sweden
| | - Aleksandr Manoilov
- Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Scheeles väg 2, S-171 77, Stockholm, Sweden
| | - Roman A Zubarev
- Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Scheeles väg 2, S-171 77, Stockholm, Sweden.
| | - Aleksandra S Kołodziejczyk
- Faculty of Chemistry, Department of Biomedical Chemistry, University of Gdańsk, Wita Stwosza 63, 80-952, Gdańsk, Poland
| | - Sylwia Rodziewicz-Motowidło
- Faculty of Chemistry, Department of Biomedical Chemistry, University of Gdańsk, Wita Stwosza 63, 80-952, Gdańsk, Poland
| | - Paulina Czaplewska
- Intercollegiate Faculty of Biotechnology, University of Gdańsk-Medical University of Gdańsk, Kładki 24, 80-822, Gdańsk, Poland.
| |
Collapse
|
7
|
Slivac I, Guay D, Mangion M, Champeil J, Gaillet B. Non-viral nucleic acid delivery methods. Expert Opin Biol Ther 2016; 17:105-118. [PMID: 27740858 DOI: 10.1080/14712598.2017.1248941] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Delivery of nucleic acid-based molecules in human cells is a highly studied approach for the treatment of several disorders including monogenic diseases and cancers. Non-viral vectors for DNA and RNA transfer, although in general less efficient than virus-based systems, are particularly well adapted mostly due to the absence of biosafety concerns. Non-viral methods could be classified in two main groups: physical and vector-assisted delivery systems. Both groups comprise several different methods, none of them universally applicable. The choice of the optimal method depends on the predefined objectives and the features of targeted micro-environment. Areas covered: In this review, the authors discuss non-viral techniques and present recent therapeutic achievements in ex vivo and in vivo nucleic acid delivery by most commonly used techniques while emphasizing the role of 'biological particles', namely peptide transduction domains, virus like particles, gesicles and exosomes. Expert opinion: The number of available non-viral transfection techniques used for human therapy increased rapidly, followed by still moderate success in efficacy. The prospects are to be found in design of multifunctional hybrid systems that reflect the viral efficiency. In this respect, biological particles are very promising.
Collapse
Affiliation(s)
- Igor Slivac
- a Faculty of Food Technology and Biotechnology , University of Zagreb , Zagreb , Croatia
| | - David Guay
- b Feldan Therapeutics, Rideau , Quebec , Canada
| | - Mathias Mangion
- c Chemical engineering Department , Université Laval , Québec , Canada
| | - Juliette Champeil
- c Chemical engineering Department , Université Laval , Québec , Canada
| | - Bruno Gaillet
- c Chemical engineering Department , Université Laval , Québec , Canada
| |
Collapse
|
8
|
The adaptive immune system restrains Alzheimer's disease pathogenesis by modulating microglial function. Proc Natl Acad Sci U S A 2016; 113:E1316-25. [PMID: 26884167 DOI: 10.1073/pnas.1525466113] [Citation(s) in RCA: 295] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The innate immune system is strongly implicated in the pathogenesis of Alzheimer's disease (AD). In contrast, the role of adaptive immunity in AD remains largely unknown. However, numerous clinical trials are testing vaccination strategies for AD, suggesting that T and B cells play a pivotal role in this disease. To test the hypothesis that adaptive immunity influences AD pathogenesis, we generated an immune-deficient AD mouse model that lacks T, B, and natural killer (NK) cells. The resulting "Rag-5xfAD" mice exhibit a greater than twofold increase in β-amyloid (Aβ) pathology. Gene expression analysis of the brain implicates altered innate and adaptive immune pathways, including changes in cytokine/chemokine signaling and decreased Ig-mediated processes. Neuroinflammation is also greatly exacerbated in Rag-5xfAD mice as indicated by a shift in microglial phenotype, increased cytokine production, and reduced phagocytic capacity. In contrast, immune-intact 5xfAD mice exhibit elevated levels of nonamyloid reactive IgGs in association with microglia, and treatment of Rag-5xfAD mice or microglial cells with preimmune IgG enhances Aβ clearance. Last, we performed bone marrow transplantation studies in Rag-5xfAD mice, revealing that replacement of these missing adaptive immune populations can dramatically reduce AD pathology. Taken together, these data strongly suggest that adaptive immune cell populations play an important role in restraining AD pathology. In contrast, depletion of B cells and their appropriate activation by T cells leads to a loss of adaptive-innate immunity cross talk and accelerated disease progression.
Collapse
|
9
|
Abstract
Alzheimer's disease (AD) is one of the most debilitating neurodegenerative diseases and is predicted to affect 1 in 85 people by 2050. Despite much effort to discover a therapeutic strategy to prevent progression or to cure AD, to date no effective disease-modifying agent is available that can prevent, halt, or reverse the cognitive and functional decline of patients with AD. Several underlying etiologies to this failure are proposed. First, accumulating evidence from past trials suggests a preventive as opposed to therapeutic paradigm, and the precise temporal and mechanistic relationship of β-amyloid (Aβ) and tau protein should be elucidated to confirm this hypothesis. Second, we are in urgent need of revised diagnostic criteria to support future trials. Third, various technical and methodological improvements are required, based on the lessons learned from previous failed trials.
Collapse
Affiliation(s)
- Andreas Soejitno
- Department of General Medicine, National Hospital, Jl. Boulevard Famili Selatan Kav.1, Graha Famili, Surabaya, 60228, Indonesia,
| | | | | |
Collapse
|