1
|
Di Consiglio M, Sturabotti E, Brugnoli B, Piozzi A, Migneco LM, Francolini I. Synthesis of sustainable eugenol/hydroxyethylmethacrylate-based polymers with antioxidant and antimicrobial properties. Polym Chem 2023. [DOI: 10.1039/d2py01183b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Eugenol is a phenolic monoterpenoid, emplyed in this study to obtain bio-based antimicrobial and antioxidant methacrylate polymers.
Collapse
|
2
|
An Overview of Biofilm Formation-Combating Strategies and Mechanisms of Action of Antibiofilm Agents. LIFE (BASEL, SWITZERLAND) 2022; 12:life12081110. [PMID: 35892912 PMCID: PMC9394423 DOI: 10.3390/life12081110] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 11/19/2022]
Abstract
Biofilm formation on surfaces via microbial colonization causes infections and has become a major health issue globally. The biofilm lifestyle provides resistance to environmental stresses and antimicrobial therapies. Biofilms can cause several chronic conditions, and effective treatment has become a challenge due to increased antimicrobial resistance. Antibiotics available for treating biofilm-associated infections are generally not very effective and require high doses that may cause toxicity in the host. Therefore, it is essential to study and develop efficient anti-biofilm strategies that can significantly reduce the rate of biofilm-associated healthcare problems. In this context, some effective combating strategies with potential anti-biofilm agents, including plant extracts, peptides, enzymes, lantibiotics, chelating agents, biosurfactants, polysaccharides, organic, inorganic, and metal nanoparticles, etc., have been reviewed to overcome biofilm-associated healthcare problems. From their extensive literature survey, it can be concluded that these molecules with considerable structural alterations might be applied to the treatment of biofilm-associated infections, by evaluating their significant delivery to the target site of the host. To design effective anti-biofilm molecules, it must be assured that the minimum inhibitory concentrations of these anti-biofilm compounds can eradicate biofilm-associated infections without causing toxic effects at a significant rate.
Collapse
|
3
|
Vahdati SN, Behboudi H, Navasatli SA, Tavakoli S, Safavi M. New insights into the inhibitory roles and mechanisms of D-amino acids in bacterial biofilms in medicine, industry, and agriculture. Microbiol Res 2022; 263:127107. [PMID: 35843196 DOI: 10.1016/j.micres.2022.127107] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 06/24/2022] [Accepted: 06/24/2022] [Indexed: 11/26/2022]
Abstract
Biofilms are complex aggregates of microbes that are tightly protected by an extracellular matrix (ECM) and may attach to a surface or adhere together. A higher persistence of bacteria on biofilms makes them resistant not only to harsh conditions but also to various antibiotics which led to the emergence of problems in different applications. Recently, it has been discovered that many bacteria produce and release various D-amino acids (D-AAs) to inhibit biofilm formation, which made a great deal of interest in research into the control of bacterial biofilms in diverse fields, such as human health, industrial settings, and medical devices. D-AAs have various mechanisms to inhibit bacterial biofilms such as: (i) interfering with protein synthesis (ii) Inhibition of extracellular polymeric materials (EPS) productions (protein, eDNA, and polysaccharide) (iii) Inhibition of quorum sensing (autoinducers), and (iv) interfere with peptidoglycan synthesis, these various modes of action, enables these small molecules to inhibit both Gram-negative and Gram-positive bacterial biofilms. Since most biofilms are multi-species, D-AAs in combination with other antimicrobial agents are good choices to combat a variety of bacterial biofilms without displaying toxicity on human cells. This review article addressed the role of D-AAs in controlling several bacterial biofilms and described the possible or definite mechanisms involved in this process.
Collapse
Affiliation(s)
- Saeed Niazi Vahdati
- Institute of Biochemistry and Biophysics, Department of Biochemistry, University of Tehran, Tehran, Iran
| | - Hossein Behboudi
- Department of Biology, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran.
| | - Sepideh Aliniaye Navasatli
- Institute of Biochemistry and Biophysics, Department of Biochemistry, University of Tehran, Tehran, Iran
| | - Sara Tavakoli
- Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Maliheh Safavi
- Department of Biotechnology, Iranian Research Organization for Science and Technology, Tehran, Iran
| |
Collapse
|
4
|
Klemm S, Baum M, Qiu H, Nan Z, Cavalheiro M, Teixeira MC, Tendero C, Gapeeva A, Adelung R, Dague E, Castelain M, Formosa-Dague C. Development of Polythiourethane/ZnO-Based Anti-Fouling Materials and Evaluation of the Adhesion of Staphylococcus aureus and Candida glabrata Using Single-Cell Force Spectroscopy. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:271. [PMID: 33494168 PMCID: PMC7909824 DOI: 10.3390/nano11020271] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/08/2021] [Accepted: 01/13/2021] [Indexed: 11/16/2022]
Abstract
The attachment of bacteria and other microbes to natural and artificial surfaces leads to the development of biofilms, which can further cause nosocomial infections. Thus, an important field of research is the development of new materials capable of preventing the initial adhesion of pathogenic microorganisms. In this work, novel polymer/particle composite materials, based on a polythiourethane (PTU) matrix and either spherical (s-ZnO) or tetrapodal (t-ZnO) shaped ZnO fillers, were developed and characterized with respect to their mechanical, chemical and surface properties. To then evaluate their potential as anti-fouling surfaces, the adhesion of two different pathogenic microorganism species, Staphylococcus aureus and Candida glabrata, was studied using atomic force microscopy (AFM). Our results show that the adhesion of both S. aureus and C. glabrata to PTU and PTU/ZnO is decreased compared to a model surface polydimethylsiloxane (PDMS). It was furthermore found that the amount of both s-ZnO and t-ZnO filler had a direct influence on the adhesion of S. aureus, as increasing amounts of ZnO particles resulted in reduced adhesion of the cells. For both microorganisms, material composites with 5 wt.% of t-ZnO particles showed the greatest potential for anti-fouling with significantly decreased adhesion of cells. Altogether, both pathogens exhibit a reduced capacity to adhere to the newly developed nanomaterials used in this study, thus showing their potential for bio-medical applications.
Collapse
Affiliation(s)
- Sophie Klemm
- Functional Nanomaterials, Institute for Materials Science, Kiel University, 24143 Kiel, Germany; (S.K.); (H.Q.); (A.G.); (R.A.)
- LAAS-CNRS, Université de Toulouse, CNRS, 31400 Toulouse, France;
| | - Martina Baum
- Functional Nanomaterials, Institute for Materials Science, Kiel University, 24143 Kiel, Germany; (S.K.); (H.Q.); (A.G.); (R.A.)
| | - Haoyi Qiu
- Functional Nanomaterials, Institute for Materials Science, Kiel University, 24143 Kiel, Germany; (S.K.); (H.Q.); (A.G.); (R.A.)
| | - Zibin Nan
- TBI, Université de Toulouse, INSA, INRAE, CNRS, 31400 Toulouse, France; (Z.N.); (M.C.)
| | - Mafalda Cavalheiro
- Institute for Bioengineering and Biosciences (iBB), Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal; (M.C.); (M.C.T.)
| | - Miguel Cacho Teixeira
- Institute for Bioengineering and Biosciences (iBB), Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal; (M.C.); (M.C.T.)
| | - Claire Tendero
- CIRIMAT, Université de Toulouse, CNRS, INPT, UPS, 31400 Toulouse, France;
- Fédération de Recherche Fermat, CNRS, 31000 Toulouse, France
| | - Anna Gapeeva
- Functional Nanomaterials, Institute for Materials Science, Kiel University, 24143 Kiel, Germany; (S.K.); (H.Q.); (A.G.); (R.A.)
| | - Rainer Adelung
- Functional Nanomaterials, Institute for Materials Science, Kiel University, 24143 Kiel, Germany; (S.K.); (H.Q.); (A.G.); (R.A.)
| | - Etienne Dague
- LAAS-CNRS, Université de Toulouse, CNRS, 31400 Toulouse, France;
- Fédération de Recherche Fermat, CNRS, 31000 Toulouse, France
| | - Mickaël Castelain
- TBI, Université de Toulouse, INSA, INRAE, CNRS, 31400 Toulouse, France; (Z.N.); (M.C.)
- Fédération de Recherche Fermat, CNRS, 31000 Toulouse, France
| | - Cécile Formosa-Dague
- TBI, Université de Toulouse, INSA, INRAE, CNRS, 31400 Toulouse, France; (Z.N.); (M.C.)
- Fédération de Recherche Fermat, CNRS, 31000 Toulouse, France
| |
Collapse
|
5
|
Francolini I, Silvestro I, Di Lisio V, Martinelli A, Piozzi A. Synthesis, Characterization, and Bacterial Fouling-Resistance Properties of Polyethylene Glycol-Grafted Polyurethane Elastomers. Int J Mol Sci 2019; 20:E1001. [PMID: 30823606 PMCID: PMC6412681 DOI: 10.3390/ijms20041001] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 02/15/2019] [Accepted: 02/20/2019] [Indexed: 12/13/2022] Open
Abstract
Despite advances in material sciences and clinical procedures for surgical hygiene, medical device implantation still exposes patients to the risk of developing local or systemic infections. The development of efficacious antimicrobial/antifouling materials may help with addressing such an issue. In this framework, polyethylene glycol (PEG)-grafted segmented polyurethanes were synthesized, physico-chemically characterized, and evaluated with respect to their bacterial fouling-resistance properties. PEG grafting significantly altered the polymer bulk and surface properties. Specifically, the PEG-grafted polyurethanes possessed a more pronounced hard/soft phase segregated microstructure, which contributed to improving the mechanical resistance of the polymers. The better flexibility of the soft phase in the PEG-functionalized polyurethanes compared to the pristine polyurethane (PU) was presumably also responsible for the higher ability of the polymer to uptake water. Additionally, dynamic contact angle measurements evidenced phenomena of surface reorganization of the PEG-functionalized polyurethanes, presumably involving the exposition of the polar PEG chains towards water. As a consequence, Staphylococcus epidermidis initial adhesion onto the surface of the PEG-functionalized PU was essentially inhibited. That was not true for the pristine PU. Biofilm formation was also strongly reduced.
Collapse
Affiliation(s)
- Iolanda Francolini
- Department of Chemistry, Sapienza University of Rome, 00185 Rome, Italy.
| | - Ilaria Silvestro
- Department of Chemistry, Sapienza University of Rome, 00185 Rome, Italy.
| | - Valerio Di Lisio
- Department of Chemistry, Sapienza University of Rome, 00185 Rome, Italy.
| | - Andrea Martinelli
- Department of Chemistry, Sapienza University of Rome, 00185 Rome, Italy.
| | - Antonella Piozzi
- Department of Chemistry, Sapienza University of Rome, 00185 Rome, Italy.
| |
Collapse
|
6
|
Roy R, Tiwari M, Donelli G, Tiwari V. Strategies for combating bacterial biofilms: A focus on anti-biofilm agents and their mechanisms of action. Virulence 2018; 9:522-554. [PMID: 28362216 PMCID: PMC5955472 DOI: 10.1080/21505594.2017.1313372] [Citation(s) in RCA: 747] [Impact Index Per Article: 124.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Biofilm refers to the complex, sessile communities of microbes found either attached to a surface or buried firmly in an extracellular matrix as aggregates. The biofilm matrix surrounding bacteria makes them tolerant to harsh conditions and resistant to antibacterial treatments. Moreover, the biofilms are responsible for causing a broad range of chronic diseases and due to the emergence of antibiotic resistance in bacteria it has really become difficult to treat them with efficacy. Furthermore, the antibiotics available till date are ineffective for treating these biofilm related infections due to their higher values of minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC), which may result in in-vivo toxicity. Hence, it is critically important to design or screen anti-biofilm molecules that can effectively minimize and eradicate biofilm related infections. In the present article, we have highlighted the mechanism of biofilm formation with reference to different models and various methods used for biofilm detection. A major focus has been put on various anti-biofilm molecules discovered or tested till date which may include herbal active compounds, chelating agents, peptide antibiotics, lantibiotics and synthetic chemical compounds along with their structures, mechanism of action and their respective MICs, MBCs, minimum biofilm inhibitory concentrations (MBICs) as well as the half maximal inhibitory concentration (IC50) values available in the literature so far. Different mode of action of anti biofilm molecules addressed here are inhibition via interference in the quorum sensing pathways, adhesion mechanism, disruption of extracellular DNA, protein, lipopolysaccharides, exopolysaccharides and secondary messengers involved in various signaling pathways. From this study, we conclude that the molecules considered here might be used to treat biofilm-associated infections after significant structural modifications, thereby investigating its effective delivery in the host. It should also be ensured that minimum effective concentration of these molecules must be capable of eradicating biofilm infections with maximum potency without posing any adverse side effects on the host.
Collapse
Affiliation(s)
- Ranita Roy
- a Department of Biochemistry , Central University of Rajasthan , Ajmer , India
| | - Monalisa Tiwari
- a Department of Biochemistry , Central University of Rajasthan , Ajmer , India
| | - Gianfranco Donelli
- b Microbial Biofilm Laboratory, IRCCS Fondazione Santa Lucia , Rome , Italy
| | - Vishvanath Tiwari
- a Department of Biochemistry , Central University of Rajasthan , Ajmer , India
| |
Collapse
|
7
|
Cuzzucoli Crucitti V, Migneco LM, Piozzi A, Taresco V, Garnett M, Argent RH, Francolini I. Intermolecular interaction and solid state characterization of abietic acid/chitosan solid dispersions possessing antimicrobial and antioxidant properties. Eur J Pharm Biopharm 2018; 125:114-123. [PMID: 29366926 DOI: 10.1016/j.ejpb.2018.01.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 10/18/2017] [Accepted: 01/19/2018] [Indexed: 10/18/2022]
Abstract
The aim of this work was to prepare and characterize solid dispersions of abietic acid (AB) and chitosan (CS) to investigate how formulation of the mixture may help in the battle against microbial colonization in different areas, such as the biomedical field or the food industry. Solid dispersions were characterized by differential scanning calorimetry, infrared spectroscopy, Raman spectroscopy, polarized optical microscopy, zeta potential and size analysis. The data showed that the dispersion/solvent evaporation method formed solid dispersions in which abietic acid was molecularly dispersed in the carrier. A synergistic effect between the two components in terms of antioxidant and antimicrobial properties was found, especially in the formulations obtained with 1/1 AB/CS molar ratio. Interestingly, the aggregation state (amorphous/crystalline) of AB seemed to affect the antimicrobial activity of the formulation, suggesting increased bioactivity when the drug was in the amorphous state. These findings, together with the demonstrated biocompatibility of the formulations, seem to open promising perspectives for a successful application of the developed AB/CS formulations in the biomedical field or in the food industry.
Collapse
Affiliation(s)
| | | | - Antonella Piozzi
- Sapienza University of Rome, Department of Chemistry, Rome, Italy
| | - Vincenzo Taresco
- School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Martin Garnett
- School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Richard H Argent
- School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK
| | | |
Collapse
|
8
|
Amato A, Migneco LM, Martinelli A, Pietrelli L, Piozzi A, Francolini I. Antimicrobial activity of catechol functionalized-chitosan versus Staphylococcus epidermidis. Carbohydr Polym 2017; 179:273-281. [PMID: 29111051 DOI: 10.1016/j.carbpol.2017.09.073] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 09/08/2017] [Accepted: 09/22/2017] [Indexed: 11/20/2022]
Abstract
Protein mussel-inspired adhesive polymers, characterized by the presence of catechol groups, possess superior muco-adhesive properties and have great potentiality in wound healing. Suitable materials for wound dressing should properly combine muco-adhesiveness and antimicrobial activity. In this work, catechol-functionalized chitosan was obtained by reaction with hydrocaffeic acid (HCAF), in order to investigate how catechol introduction at different content could affect the intrinsic antimicrobial activity of the polymer itself. Unexpectedly, an enhancement of chitosan antimicrobial activity was observed after catechol functionalization, with a fourfold reduction in the polymer minimum inhibitory concentration versus Staphylococcus epidermidis. Additionally, a commercial wound dressing coated with one of the synthesized CS-HCAF derivatives showed a significant reduction in the adhesion of S. epidermidis compared to the uncoated dressing (3-log reduction). The CS-HCAF derivatives also showed an interesting antioxidant property (EC50 ranging from 20 to 60μg/mL), which further confirms the potentiality of these materials as wound dressings.
Collapse
Affiliation(s)
- Andrea Amato
- Department of Chemistry, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy.
| | - Luisa Maria Migneco
- Department of Chemistry, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy.
| | - Andrea Martinelli
- Department of Chemistry, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy.
| | - Loris Pietrelli
- ENEA, C.R. Casaccia, Via Anguillarese 301, 00100 Rome, Italy.
| | - Antonella Piozzi
- Department of Chemistry, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy.
| | - Iolanda Francolini
- Department of Chemistry, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy.
| |
Collapse
|
9
|
Antimicrobial and antioxidant amphiphilic random copolymers to address medical device-centered infections. Acta Biomater 2015; 22:131-40. [PMID: 25917843 DOI: 10.1016/j.actbio.2015.04.023] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 04/01/2015] [Accepted: 04/19/2015] [Indexed: 12/25/2022]
Abstract
Microbial biofilms are known to support a number of human infections, including those related to medical devices. This work is focused on the development of novel dual-function amphiphilic random copolymers to be employed as coatings for medical devices. Particularly, copolymers were obtained by polymerization of an antimicrobial cationic monomer (bearing tertiary amine) and an antioxidant and antimicrobial hydrophobic monomer (containing hydroxytyrosol, HTy). To obtain copolymers with various amphiphilic balance, different molar ratios of the two monomers were used. (1)H NMR and DSC analyses evidenced that HTy aromatic rings are able to interact with each other leading to a supra-macromolecular re-arrangement and decrease the copolymer size in water. All copolymers showed good antioxidant activity and Fe(2+) chelating ability. Cytotoxicity and hemolytic tests evidenced that the amphiphilic balance, cationic charge density and polymer size in solution are key determinants for polymer biocompatibility. As for the antimicrobial properties, the lowest minimal inhibitory concentration (MIC = 40 μg/mL) against Staphylococcus epidermidis was shown by the water-soluble copolymer having the highest HTy molar content (0.3). This copolymer layered onto catheter surfaces was also able to prevent staphylococcal adhesion. This approach permits not only prevention of biofilm infections but also reduction of the risk of emergence of drug-resistant bacteria. Indeed, the combination of two active compounds in the same polymer can provide a synergistic action against biofilms and suppress reactive species oxygen (ROS), known to promote the occurrence of antibiotic resistance.
Collapse
|
10
|
Taresco V, Francolini I, Padella F, Bellusci M, Boni A, Innocenti C, Martinelli A, D'Ilario L, Piozzi A. Design and characterization of antimicrobial usnic acid loaded-core/shell magnetic nanoparticles. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 52:72-81. [DOI: 10.1016/j.msec.2015.03.044] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 03/03/2015] [Accepted: 03/23/2015] [Indexed: 11/15/2022]
|
11
|
Crisante F, Taresco V, Donelli G, Vuotto C, Martinelli A, D’Ilario L, Pietrelli L, Francolini I, Piozzi A. Antioxidant Hydroxytyrosol-Based Polyacrylate with Antimicrobial and Antiadhesive Activity Versus Staphylococcus Epidermidis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 901:25-36. [DOI: 10.1007/5584_2015_5013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|